Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Chevalleys_structure_theorem> ?p ?o }
Showing triples 1 to 34 of
34
with 100 triples per page.
- Chevalleys_structure_theorem abstract "In algebraic geometry, Chevalley's structure theorem states that a connected algebraic group over a perfect field has a unique normal affine algebraic subgroup such that the quotient is an abelian variety. It was proved by Chevalley (1960) (though he had previously announced the result in 1953), Barsotti (1955), and Rosenlicht (1956).Chevalley's original proof, and the other early proofs by Barsotti and Rosenlicht, used the idea of mapping the algebraic group to its Albanese variety. The original proofs were based on Weil's book Foundations of algebraic geometry, but Conrad (2002) later gave an exposition of Chevalley's proof in scheme-theoretic terminology.".
- Chevalleys_structure_theorem wikiPageExternalLink chev.pdf.
- Chevalleys_structure_theorem wikiPageExternalLink 2372523.
- Chevalleys_structure_theorem wikiPageID "37657294".
- Chevalleys_structure_theorem wikiPageLength "2213".
- Chevalleys_structure_theorem wikiPageOutDegree "9".
- Chevalleys_structure_theorem wikiPageRevisionID "647529574".
- Chevalleys_structure_theorem wikiPageWikiLink Abelian_variety.
- Chevalleys_structure_theorem wikiPageWikiLink Albanese_variety.
- Chevalleys_structure_theorem wikiPageWikiLink Algebraic_geometry.
- Chevalleys_structure_theorem wikiPageWikiLink Algebraic_group.
- Chevalleys_structure_theorem wikiPageWikiLink American_Journal_of_Mathematics.
- Chevalleys_structure_theorem wikiPageWikiLink Category:Algebraic_groups.
- Chevalleys_structure_theorem wikiPageWikiLink Category:Theorems_in_algebraic_geometry.
- Chevalleys_structure_theorem wikiPageWikiLink Foundations_of_Algebraic_Geometry.
- Chevalleys_structure_theorem wikiPageWikiLink Foundations_of_algebraic_geometry.
- Chevalleys_structure_theorem wikiPageWikiLink Perfect_field.
- Chevalleys_structure_theorem wikiPageWikiLinkText "Chevalley's structure theorem".
- Chevalleys_structure_theorem hasPhotoCollection Chevalleys_structure_theorem.
- Chevalleys_structure_theorem wikiPageUsesTemplate Template:Citation.
- Chevalleys_structure_theorem wikiPageUsesTemplate Template:Harvs.
- Chevalleys_structure_theorem wikiPageUsesTemplate Template:Harvtxt.
- Chevalleys_structure_theorem subject Category:Algebraic_groups.
- Chevalleys_structure_theorem subject Category:Theorems_in_algebraic_geometry.
- Chevalleys_structure_theorem hypernym Variety.
- Chevalleys_structure_theorem type Grape.
- Chevalleys_structure_theorem comment "In algebraic geometry, Chevalley's structure theorem states that a connected algebraic group over a perfect field has a unique normal affine algebraic subgroup such that the quotient is an abelian variety. It was proved by Chevalley (1960) (though he had previously announced the result in 1953), Barsotti (1955), and Rosenlicht (1956).Chevalley's original proof, and the other early proofs by Barsotti and Rosenlicht, used the idea of mapping the algebraic group to its Albanese variety.".
- Chevalleys_structure_theorem label "Chevalley's structure theorem".
- Chevalleys_structure_theorem sameAs m.0ndhvjt.
- Chevalleys_structure_theorem sameAs Chevalleys_struktursats.
- Chevalleys_structure_theorem sameAs Q5094298.
- Chevalleys_structure_theorem sameAs Q5094298.
- Chevalleys_structure_theorem wasDerivedFrom Chevalleys_structure_theoremoldid=647529574.
- Chevalleys_structure_theorem isPrimaryTopicOf Chevalleys_structure_theorem.