Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q7307249> ?p ?o }
Showing triples 1 to 21 of
21
with 100 triples per page.
- Q7307249 subject Q7036105.
- Q7307249 subject Q7163620.
- Q7307249 abstract "In set theory, a branch of mathematics, a reflection principle says that it is possible to find sets that resemble the class of all sets. There are several different forms of the reflection principle depending on exactly what is meant by "resemble". Weak forms of the reflection principle are theorems of ZF set theory due to Montague (1961), while stronger forms can be new and very powerful axioms for set theory. The name "reflection principle" comes from the fact that properties of the universe of all sets are "reflected" down to a smaller set.".
- Q7307249 wikiPageExternalLink 1103038638.
- Q7307249 wikiPageWikiLink Q1068283.
- Q7307249 wikiPageWikiLink Q12482.
- Q7307249 wikiPageWikiLink Q1331373.
- Q7307249 wikiPageWikiLink Q1548262.
- Q7307249 wikiPageWikiLink Q18349448.
- Q7307249 wikiPageWikiLink Q191849.
- Q7307249 wikiPageWikiLink Q278770.
- Q7307249 wikiPageWikiLink Q395.
- Q7307249 wikiPageWikiLink Q4046287.
- Q7307249 wikiPageWikiLink Q4669873.
- Q7307249 wikiPageWikiLink Q6035663.
- Q7307249 wikiPageWikiLink Q7036105.
- Q7307249 wikiPageWikiLink Q7163620.
- Q7307249 wikiPageWikiLink Q7456256.
- Q7307249 wikiPageWikiLink Q925445.
- Q7307249 comment "In set theory, a branch of mathematics, a reflection principle says that it is possible to find sets that resemble the class of all sets. There are several different forms of the reflection principle depending on exactly what is meant by "resemble". Weak forms of the reflection principle are theorems of ZF set theory due to Montague (1961), while stronger forms can be new and very powerful axioms for set theory.".
- Q7307249 label "Reflection principle".