Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q696822> ?p ?o }
Showing triples 1 to 35 of
35
with 100 triples per page.
- Q696822 subject Q6975251.
- Q696822 abstract "In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of iterative methods. Arnoldi finds the eigenvalues of general (possibly non-Hermitian) matrices; an analogous method for Hermitian matrices is the Lanczos iteration. The Arnoldi iteration was invented by W. E. Arnoldi in 1951.The term iterative method, used to describe Arnoldi, can perhaps be somewhat confusing. Note that all general eigenvalue algorithms must be iterative. This is not what is referred to when we say Arnoldi is an iterative method. Rather, Arnoldi belongs to a class of linear algebra algorithms (based on the idea of Krylov subspaces) that give a partial result after a relatively small number of iterations. This is in contrast to so-called direct methods, which must complete to give any useful results.Arnoldi iteration is a typical large sparse matrix algorithm: It does not access the elements of the matrix directly, but rather makes the matrix map vectors and makes its conclusions from their images. This is the motivation for building the Krylov subspace.".
- Q696822 wikiPageExternalLink eigs.html.
- Q696822 wikiPageWikiLink Q11216.
- Q696822 wikiPageWikiLink Q1163608.
- Q696822 wikiPageWikiLink Q125977.
- Q696822 wikiPageWikiLink Q1426504.
- Q696822 wikiPageWikiLink Q1430640.
- Q696822 wikiPageWikiLink Q1432976.
- Q696822 wikiPageWikiLink Q169478.
- Q696822 wikiPageWikiLink Q1757151.
- Q696822 wikiPageWikiLink Q176640.
- Q696822 wikiPageWikiLink Q189569.
- Q696822 wikiPageWikiLink Q190524.
- Q696822 wikiPageWikiLink Q215067.
- Q696822 wikiPageWikiLink Q2321565.
- Q696822 wikiPageWikiLink Q3099696.
- Q696822 wikiPageWikiLink Q339011.
- Q696822 wikiPageWikiLink Q366640.
- Q696822 wikiPageWikiLink Q428813.
- Q696822 wikiPageWikiLink Q44337.
- Q696822 wikiPageWikiLink Q453132.
- Q696822 wikiPageWikiLink Q4653888.
- Q696822 wikiPageWikiLink Q475239.
- Q696822 wikiPageWikiLink Q652941.
- Q696822 wikiPageWikiLink Q6766437.
- Q696822 wikiPageWikiLink Q6975251.
- Q696822 wikiPageWikiLink Q7964752.
- Q696822 wikiPageWikiLink Q8059044.
- Q696822 wikiPageWikiLink Q82571.
- Q696822 wikiPageWikiLink Q8366.
- Q696822 wikiPageWikiLink Q849705.
- Q696822 wikiPageWikiLink Q852247.
- Q696822 comment "In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of iterative methods. Arnoldi finds the eigenvalues of general (possibly non-Hermitian) matrices; an analogous method for Hermitian matrices is the Lanczos iteration. The Arnoldi iteration was invented by W. E. Arnoldi in 1951.The term iterative method, used to describe Arnoldi, can perhaps be somewhat confusing. Note that all general eigenvalue algorithms must be iterative.".
- Q696822 label "Arnoldi iteration".