Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q5134413> ?p ?o }
Showing triples 1 to 55 of
55
with 100 triples per page.
- Q5134413 subject Q8529637.
- Q5134413 subject Q8732951.
- Q5134413 subject Q8800142.
- Q5134413 abstract "Clique complexes, flag complexes, and conformal hypergraphs are closely related mathematical objects in graph theory and geometric topology that each describe the cliques (complete subgraphs) of an undirected graph.The clique complex X(G) of an undirected graph G is an abstract simplicial complex (that is, a family of finite sets closed under the operation of taking subsets), formed by the sets of vertices in the cliques of G. Any subset of a clique is itself a clique, so this family of sets meets the requirement of an abstract simplicial complex that every subset of a set in the family should also be in the family. The clique complex can also be viewed as a topological space in which each clique of k vertices is represented by a simplex of dimension k − 1. The 1-skeleton of X(G) (also known as the underlying graph of the complex) is an undirected graph with a vertex for every 1-element set in the family and an edge for every 2-element set in the family; it is isomorphic to G.Clique complexes are also known as Whitney complexes. A Whitney triangulation or clean triangulation of a two-dimensional manifold is an embedding of a graph G onto the manifold in such a way that every face is a triangle and every triangle is a face. If a graph G has a Whitney triangulation, it must form a cell complex that is isomorphic to the Whitney complex of G. In this case, the complex (viewed as a topological space) is homeomorphic to the underlying manifold. A graph G has a 2-manifold clique complex, and can be embedded as a Whitney triangulation, if and only if G is locally cyclic; this means that, for every vertex v in the graph, the induced subgraph formed by the neighbors of v forms a single cycle.".
- Q5134413 thumbnail VR_complex.svg?width=300.
- Q5134413 wikiPageExternalLink survey_cm_bis.pdf.
- Q5134413 wikiPageExternalLink v9i1r17.html.
- Q5134413 wikiPageExternalLink cuello10_DM.ps.
- Q5134413 wikiPageWikiLink Q1058754.
- Q5134413 wikiPageWikiLink Q1060343.
- Q5134413 wikiPageWikiLink Q131476.
- Q5134413 wikiPageWikiLink Q1354987.
- Q5134413 wikiPageWikiLink Q1378376.
- Q5134413 wikiPageWikiLink Q141488.
- Q5134413 wikiPageWikiLink Q189061.
- Q5134413 wikiPageWikiLink Q1939186.
- Q5134413 wikiPageWikiLink Q202906.
- Q5134413 wikiPageWikiLink Q203920.
- Q5134413 wikiPageWikiLink Q213723.
- Q5134413 wikiPageWikiLink Q3115549.
- Q5134413 wikiPageWikiLink Q331350.
- Q5134413 wikiPageWikiLink Q353451.
- Q5134413 wikiPageWikiLink Q369377.
- Q5134413 wikiPageWikiLink Q395.
- Q5134413 wikiPageWikiLink Q4078260.
- Q5134413 wikiPageWikiLink Q4382849.
- Q5134413 wikiPageWikiLink Q45715.
- Q5134413 wikiPageWikiLink Q4669959.
- Q5134413 wikiPageWikiLink Q474715.
- Q5134413 wikiPageWikiLink Q5008891.
- Q5134413 wikiPageWikiLink Q5154570.
- Q5134413 wikiPageWikiLink Q5155607.
- Q5134413 wikiPageWikiLink Q5164372.
- Q5134413 wikiPageWikiLink Q5282038.
- Q5134413 wikiPageWikiLink Q5597085.
- Q5134413 wikiPageWikiLink Q5614006.
- Q5134413 wikiPageWikiLink Q6787903.
- Q5134413 wikiPageWikiLink Q7140639.
- Q5134413 wikiPageWikiLink Q7233030.
- Q5134413 wikiPageWikiLink Q7366184.
- Q5134413 wikiPageWikiLink Q7520883.
- Q5134413 wikiPageWikiLink Q761631.
- Q5134413 wikiPageWikiLink Q7840154.
- Q5134413 wikiPageWikiLink Q7928689.
- Q5134413 wikiPageWikiLink Q840247.
- Q5134413 wikiPageWikiLink Q8529637.
- Q5134413 wikiPageWikiLink Q8563541.
- Q5134413 wikiPageWikiLink Q8732951.
- Q5134413 wikiPageWikiLink Q8800142.
- Q5134413 wikiPageWikiLink Q898572.
- Q5134413 wikiPageWikiLink Q902252.
- Q5134413 wikiPageWikiLink Q913598.
- Q5134413 comment "Clique complexes, flag complexes, and conformal hypergraphs are closely related mathematical objects in graph theory and geometric topology that each describe the cliques (complete subgraphs) of an undirected graph.The clique complex X(G) of an undirected graph G is an abstract simplicial complex (that is, a family of finite sets closed under the operation of taking subsets), formed by the sets of vertices in the cliques of G.".
- Q5134413 label "Clique complex".
- Q5134413 depiction VR_complex.svg.