Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q3026495> ?p ?o }
Showing triples 1 to 51 of
51
with 100 triples per page.
- Q3026495 subject Q10185811.
- Q3026495 subject Q7217289.
- Q3026495 subject Q8647012.
- Q3026495 abstract "In mathematics, and specifically graph theory, Paley graphs, named after Raymond Paley, are dense undirected graphs constructed from the members of a suitable finite field by connecting pairs of elements that differ by a quadratic residue. The Paley graphs form an infinite family of conference graphs, which yield an infinite family of symmetric conference matrices. Paley graphs allow graph-theoretic tools to be applied to the number theory of quadratic residues, and have interesting properties that make them useful in graph theory more generally.Paley graphs are closely related to the Paley construction for constructing Hadamard matrices from quadratic residues (Paley 1933).They were introduced as graphs independently by Sachs (1962) and Erdős & Rényi (1963). Sachs was interested in them for their self-complementarity properties, while Erdős and Rényi studied their symmetries.Paley digraphs are directed analogs of Paley graphs that yield antisymmetric conference matrices. They were introduced by Graham & Spencer (1971) (independently of Sachs, Erdős, and Rényi) as a way of constructing tournaments with a property previously known to be held only by random tournaments: in a Paley digraph, every small subset of vertices is dominated by some other vertex.".
- Q3026495 thumbnail Paley13.svg?width=300.
- Q3026495 wikiPageExternalLink v12i1n15.html.
- Q3026495 wikiPageExternalLink P0506_PaleyGenus.html.
- Q3026495 wikiPageExternalLink Paley.html.
- Q3026495 wikiPageWikiLink Q10185811.
- Q3026495 wikiPageWikiLink Q1125095.
- Q3026495 wikiPageWikiLink Q1137726.
- Q3026495 wikiPageWikiLink Q12479.
- Q3026495 wikiPageWikiLink Q12510.
- Q3026495 wikiPageWikiLink Q131476.
- Q3026495 wikiPageWikiLink Q1320634.
- Q3026495 wikiPageWikiLink Q1336170.
- Q3026495 wikiPageWikiLink Q1354987.
- Q3026495 wikiPageWikiLink Q1394249.
- Q3026495 wikiPageWikiLink Q1422682.
- Q3026495 wikiPageWikiLink Q1667469.
- Q3026495 wikiPageWikiLink Q173746.
- Q3026495 wikiPageWikiLink Q177646.
- Q3026495 wikiPageWikiLink Q2194884.
- Q3026495 wikiPageWikiLink Q2654085.
- Q3026495 wikiPageWikiLink Q273037.
- Q3026495 wikiPageWikiLink Q2985068.
- Q3026495 wikiPageWikiLink Q3085841.
- Q3026495 wikiPageWikiLink Q3186905.
- Q3026495 wikiPageWikiLink Q3736652.
- Q3026495 wikiPageWikiLink Q395.
- Q3026495 wikiPageWikiLink Q465715.
- Q3026495 wikiPageWikiLink Q5030309.
- Q3026495 wikiPageWikiLink Q5121633.
- Q3026495 wikiPageWikiLink Q5159897.
- Q3026495 wikiPageWikiLink Q5905129.
- Q3026495 wikiPageWikiLink Q603880.
- Q3026495 wikiPageWikiLink Q692823.
- Q3026495 wikiPageWikiLink Q7127466.
- Q3026495 wikiPageWikiLink Q7217289.
- Q3026495 wikiPageWikiLink Q7268351.
- Q3026495 wikiPageWikiLink Q751484.
- Q3026495 wikiPageWikiLink Q776602.
- Q3026495 wikiPageWikiLink Q78039.
- Q3026495 wikiPageWikiLink Q7840154.
- Q3026495 wikiPageWikiLink Q852973.
- Q3026495 wikiPageWikiLink Q8647012.
- Q3026495 wikiPageWikiLink Q878259.
- Q3026495 wikiPageWikiLink Q949972.
- Q3026495 comment "In mathematics, and specifically graph theory, Paley graphs, named after Raymond Paley, are dense undirected graphs constructed from the members of a suitable finite field by connecting pairs of elements that differ by a quadratic residue. The Paley graphs form an infinite family of conference graphs, which yield an infinite family of symmetric conference matrices.".
- Q3026495 label "Paley graph".
- Q3026495 depiction Paley13.svg.