Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q2963975> ?p ?o }
Showing triples 1 to 77 of
77
with 100 triples per page.
- Q2963975 subject Q8826459.
- Q2963975 abstract "In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by Milnor (1961). Originally developed for differentiable (= smooth) manifolds, surgery techniques also apply to PL (= piecewise linear) and topological manifolds. Surgery refers to cutting out parts of the manifold and replacing it with a part of another manifold, matching up along the cut or boundary. This is closely related to, but not identical with, handlebody decompositions. It is a major tool in the study and classification of manifolds of dimension greater than 3.More technically, the idea is to start with a well-understood manifold M and perform surgery on it to produce a manifold M ′ having some desired property, in such a way that the effects on the homology, homotopy groups, or other interesting invariants of the manifold are known.The classification of exotic spheres by Kervaire and Milnor (1963) led to the emergence of surgery theory as a major tool in high-dimensional topology.".
- Q2963975 thumbnail Circle-surgery.svg?width=300.
- Q2963975 wikiPageExternalLink 87.pdf.
- Q2963975 wikiPageExternalLink 193.pdf.
- Q2963975 wikiPageExternalLink www.map.mpim-bonn.mpg.de.
- Q2963975 wikiPageExternalLink Category:Oberwolfach_Surgery_Seminar_2012.
- Q2963975 wikiPageExternalLink Category:Regensburg_Surgery_Blockseminar_2012.
- Q2963975 wikiPageExternalLink 287x.html.
- Q2963975 wikiPageExternalLink ~shmuel.
- Q2963975 wikiPageExternalLink ~aar.
- Q2963975 wikiPageExternalLink index.htm.
- Q2963975 wikiPageExternalLink scm.pdf.
- Q2963975 wikiPageExternalLink wall1.pdf.
- Q2963975 wikiPageExternalLink wall2.pdf.
- Q2963975 wikiPageExternalLink fig3.png.
- Q2963975 wikiPageExternalLink ats1.pdf.
- Q2963975 wikiPageExternalLink ats2.pdf.
- Q2963975 wikiPageExternalLink lurie2011.pdf.
- Q2963975 wikiPageExternalLink surgerygroup.
- Q2963975 wikiPageWikiLink Q1017338.
- Q2963975 wikiPageWikiLink Q1058314.
- Q2963975 wikiPageWikiLink Q1143042.
- Q2963975 wikiPageWikiLink Q1144780.
- Q2963975 wikiPageWikiLink Q1147161.
- Q2963975 wikiPageWikiLink Q1198376.
- Q2963975 wikiPageWikiLink Q12510.
- Q2963975 wikiPageWikiLink Q1398951.
- Q2963975 wikiPageWikiLink Q1626416.
- Q2963975 wikiPageWikiLink Q1708210.
- Q2963975 wikiPageWikiLink Q176916.
- Q2963975 wikiPageWikiLink Q1778247.
- Q2963975 wikiPageWikiLink Q188675.
- Q2963975 wikiPageWikiLink Q1939186.
- Q2963975 wikiPageWikiLink Q1946642.
- Q2963975 wikiPageWikiLink Q203920.
- Q2963975 wikiPageWikiLink Q2063099.
- Q2963975 wikiPageWikiLink Q215765.
- Q2963975 wikiPageWikiLink Q2296951.
- Q2963975 wikiPageWikiLink Q2325488.
- Q2963975 wikiPageWikiLink Q23638.
- Q2963975 wikiPageWikiLink Q2370925.
- Q2963975 wikiPageWikiLink Q2421733.
- Q2963975 wikiPageWikiLink Q2546666.
- Q2963975 wikiPageWikiLink Q2602722.
- Q2963975 wikiPageWikiLink Q2721559.
- Q2963975 wikiPageWikiLink Q3105146.
- Q2963975 wikiPageWikiLink Q333975.
- Q2963975 wikiPageWikiLink Q3552958.
- Q2963975 wikiPageWikiLink Q3675173.
- Q2963975 wikiPageWikiLink Q395.
- Q2963975 wikiPageWikiLink Q4138792.
- Q2963975 wikiPageWikiLink Q465654.
- Q2963975 wikiPageWikiLink Q4808684.
- Q2963975 wikiPageWikiLink Q493941.
- Q2963975 wikiPageWikiLink Q5128404.
- Q2963975 wikiPageWikiLink Q5156513.
- Q2963975 wikiPageWikiLink Q527698.
- Q2963975 wikiPageWikiLink Q6456169.
- Q2963975 wikiPageWikiLink Q6749571.
- Q2963975 wikiPageWikiLink Q7051812.
- Q2963975 wikiPageWikiLink Q7102405.
- Q2963975 wikiPageWikiLink Q7191425.
- Q2963975 wikiPageWikiLink Q7207863.
- Q2963975 wikiPageWikiLink Q726376.
- Q2963975 wikiPageWikiLink Q746083.
- Q2963975 wikiPageWikiLink Q7575269.
- Q2963975 wikiPageWikiLink Q7646195.
- Q2963975 wikiPageWikiLink Q7646196.
- Q2963975 wikiPageWikiLink Q7646197.
- Q2963975 wikiPageWikiLink Q7996043.
- Q2963975 wikiPageWikiLink Q81194.
- Q2963975 wikiPageWikiLink Q8826459.
- Q2963975 wikiPageWikiLink Q980509.
- Q2963975 comment "In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by Milnor (1961). Originally developed for differentiable (= smooth) manifolds, surgery techniques also apply to PL (= piecewise linear) and topological manifolds. Surgery refers to cutting out parts of the manifold and replacing it with a part of another manifold, matching up along the cut or boundary.".
- Q2963975 label "Surgery theory".
- Q2963975 depiction Circle-surgery.svg.