Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q2736426> ?p ?o }
Showing triples 1 to 31 of
31
with 100 triples per page.
- Q2736426 subject Q13292588.
- Q2736426 subject Q8806217.
- Q2736426 abstract "In queueing theory, a discipline within the mathematical theory of probability, an M/M/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times have an exponential distribution. The model name is written in Kendall's notation. The model is the most elementary of queueing models and an attractive object of study as closed-form expressions can be obtained for many metrics of interest in this model. An extension of this model with more than one server is the M/M/c queue.".
- Q2736426 thumbnail Mm1_queue.svg?width=300.
- Q2736426 wikiPageWikiLink Q1145117.
- Q2736426 wikiPageWikiLink Q1192209.
- Q2736426 wikiPageWikiLink Q13292588.
- Q2736426 wikiPageWikiLink Q1456275.
- Q2736426 wikiPageWikiLink Q1738700.
- Q2736426 wikiPageWikiLink Q176720.
- Q2736426 wikiPageWikiLink Q194404.
- Q2736426 wikiPageWikiLink Q199691.
- Q2736426 wikiPageWikiLink Q207522.
- Q2736426 wikiPageWikiLink Q219637.
- Q2736426 wikiPageWikiLink Q230930.
- Q2736426 wikiPageWikiLink Q237193.
- Q2736426 wikiPageWikiLink Q2896016.
- Q2736426 wikiPageWikiLink Q5862903.
- Q2736426 wikiPageWikiLink Q617388.
- Q2736426 wikiPageWikiLink Q729523.
- Q2736426 wikiPageWikiLink Q7307228.
- Q2736426 wikiPageWikiLink Q777407.
- Q2736426 wikiPageWikiLink Q7834432.
- Q2736426 wikiPageWikiLink Q847526.
- Q2736426 wikiPageWikiLink Q869887.
- Q2736426 wikiPageWikiLink Q8806217.
- Q2736426 wikiPageWikiLink Q910548.
- Q2736426 wikiPageWikiLink Q951381.
- Q2736426 comment "In queueing theory, a discipline within the mathematical theory of probability, an M/M/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times have an exponential distribution. The model name is written in Kendall's notation. The model is the most elementary of queueing models and an attractive object of study as closed-form expressions can be obtained for many metrics of interest in this model.".
- Q2736426 label "M/M/1 queue".
- Q2736426 depiction Mm1_queue.svg.