Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q2293800> ?p ?o }
Showing triples 1 to 67 of
67
with 100 triples per page.
- Q2293800 subject Q5519261.
- Q2293800 subject Q6091893.
- Q2293800 subject Q7000764.
- Q2293800 subject Q7217289.
- Q2293800 subject Q8612029.
- Q2293800 abstract "In number theory, Sylvester's sequence is an integer sequence in which each member of the sequence is the product of the previous members, plus one. The first few terms of the sequence are:2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443 (sequence A000058 in OEIS).Sylvester's sequence is named after James Joseph Sylvester, who first investigated it in 1880. Its values grow doubly exponentially, and the sum of its reciprocals forms a series of unit fractions that converges to 1 more rapidly than any other series of unit fractions with the same number of terms. The recurrence by which it is defined allows the numbers in the sequence to be factored more easily than other numbers of the same magnitude, but, due to the rapid growth of the sequence, complete prime factorizations are known only for a few of its members. Values derived from this sequence have also been used to construct finite Egyptian fraction representations of 1, Sasakian Einstein manifolds, and hard instances for online algorithms.".
- Q2293800 thumbnail Sylvester-square.svg?width=300.
- Q2293800 wikiPageExternalLink caen.pdf.
- Q2293800 wikiPageExternalLink books?id=1AP2CEGxTkgC&pg=PA346.
- Q2293800 wikiPageExternalLink 1102689567.
- Q2293800 wikiPageExternalLink DESW_dcfs.ps.
- Q2293800 wikiPageExternalLink kmath455.htm.
- Q2293800 wikiPageWikiLink Q1025756.
- Q2293800 wikiPageWikiLink Q104752.
- Q2293800 wikiPageWikiLink Q1224402.
- Q2293800 wikiPageWikiLink Q12479.
- Q2293800 wikiPageWikiLink Q12507.
- Q2293800 wikiPageWikiLink Q1309313.
- Q2293800 wikiPageWikiLink Q13222616.
- Q2293800 wikiPageWikiLink Q170043.
- Q2293800 wikiPageWikiLink Q170198.
- Q2293800 wikiPageWikiLink Q17079511.
- Q2293800 wikiPageWikiLink Q1764362.
- Q2293800 wikiPageWikiLink Q176916.
- Q2293800 wikiPageWikiLink Q1812172.
- Q2293800 wikiPageWikiLink Q207264.
- Q2293800 wikiPageWikiLink Q2164293.
- Q2293800 wikiPageWikiLink Q216906.
- Q2293800 wikiPageWikiLink Q22808481.
- Q2293800 wikiPageWikiLink Q2297602.
- Q2293800 wikiPageWikiLink Q2379946.
- Q2293800 wikiPageWikiLink Q2517149.
- Q2293800 wikiPageWikiLink Q255388.
- Q2293800 wikiPageWikiLink Q2584927.
- Q2293800 wikiPageWikiLink Q2707818.
- Q2293800 wikiPageWikiLink Q3075235.
- Q2293800 wikiPageWikiLink Q3105146.
- Q2293800 wikiPageWikiLink Q310781.
- Q2293800 wikiPageWikiLink Q343132.
- Q2293800 wikiPageWikiLink Q4046287.
- Q2293800 wikiPageWikiLink Q4846249.
- Q2293800 wikiPageWikiLink Q49008.
- Q2293800 wikiPageWikiLink Q50706.
- Q2293800 wikiPageWikiLink Q50707.
- Q2293800 wikiPageWikiLink Q5519261.
- Q2293800 wikiPageWikiLink Q5601712.
- Q2293800 wikiPageWikiLink Q564426.
- Q2293800 wikiPageWikiLink Q6091893.
- Q2293800 wikiPageWikiLink Q617295.
- Q2293800 wikiPageWikiLink Q632814.
- Q2293800 wikiPageWikiLink Q649322.
- Q2293800 wikiPageWikiLink Q7000764.
- Q2293800 wikiPageWikiLink Q7077447.
- Q2293800 wikiPageWikiLink Q713122.
- Q2293800 wikiPageWikiLink Q7217289.
- Q2293800 wikiPageWikiLink Q7243159.
- Q2293800 wikiPageWikiLink Q735416.
- Q2293800 wikiPageWikiLink Q740970.
- Q2293800 wikiPageWikiLink Q7424986.
- Q2293800 wikiPageWikiLink Q786431.
- Q2293800 wikiPageWikiLink Q814581.
- Q2293800 wikiPageWikiLink Q83478.
- Q2293800 wikiPageWikiLink Q8366.
- Q2293800 wikiPageWikiLink Q8612029.
- Q2293800 comment "In number theory, Sylvester's sequence is an integer sequence in which each member of the sequence is the product of the previous members, plus one. The first few terms of the sequence are:2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443 (sequence A000058 in OEIS).Sylvester's sequence is named after James Joseph Sylvester, who first investigated it in 1880.".
- Q2293800 label "Sylvester's sequence".
- Q2293800 depiction Sylvester-square.svg.