Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q15080987> ?p ?o }
Showing triples 1 to 19 of
19
with 100 triples per page.
- Q15080987 subject Q8805755.
- Q15080987 subject Q8851962.
- Q15080987 subject Q9003239.
- Q15080987 abstract "In mathematics, Lie's third theorem states that every finite-dimensional Lie algebra g over the real numbers is associated to a Lie group G.Historically, the third theorem referred to a different but related result. The two preceding theorems of Sophus Lie, restated in modern language, relate to the infinitesimal transformations of a transformation group acting on a smooth manifold. The third theorem on the list stated the Jacobi identity for the infinitesimal transformations of a local Lie group. Conversely, in the presence of a Lie algebra of vector fields, integration gives a local Lie group action. The result now known as the third theorem provides an intrinsic and global converse to the original theorem.".
- Q15080987 wikiPageExternalLink l058760.htm.
- Q15080987 wikiPageWikiLink Q10310534.
- Q15080987 wikiPageWikiLink Q1151539.
- Q15080987 wikiPageWikiLink Q288465.
- Q15080987 wikiPageWikiLink Q30769.
- Q15080987 wikiPageWikiLink Q3552958.
- Q15080987 wikiPageWikiLink Q395.
- Q15080987 wikiPageWikiLink Q4382845.
- Q15080987 wikiPageWikiLink Q622679.
- Q15080987 wikiPageWikiLink Q664495.
- Q15080987 wikiPageWikiLink Q8805755.
- Q15080987 wikiPageWikiLink Q8851962.
- Q15080987 wikiPageWikiLink Q9003239.
- Q15080987 comment "In mathematics, Lie's third theorem states that every finite-dimensional Lie algebra g over the real numbers is associated to a Lie group G.Historically, the third theorem referred to a different but related result. The two preceding theorems of Sophus Lie, restated in modern language, relate to the infinitesimal transformations of a transformation group acting on a smooth manifold.".
- Q15080987 label "Lie's third theorem".