Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q1096353> ?p ?o }
Showing triples 1 to 61 of
61
with 100 triples per page.
- Q1096353 subject Q7363122.
- Q1096353 subject Q7451685.
- Q1096353 subject Q8549536.
- Q1096353 abstract "In mathematical logic and philosophy, Skolem's paradox is a seeming contradiction that arises from the downward Löwenheim–Skolem theorem. Thoralf Skolem (1922) was the first to discuss the seemingly contradictory aspects of the theorem, and to discover the relativity of set-theoretic notions now known as non-absoluteness. Although it is not an actual antinomy like Russell's paradox, the result is typically called a paradox, and was described as a "paradoxical state of affairs" by Skolem (1922: p. 295). Skolem's paradox is that every countable axiomatisation of set theory in first-order logic, if it is consistent, has a model that is countable. This appears contradictory because it is possible to prove, from those same axioms, a sentence that intuitively says (or that precisely says in the standard model of the theory) that there exist sets that are not countable. Thus the seeming contradiction is that a model that is itself countable, and which therefore contains only countable sets, satisfies the first order sentence that intuitively states "there are uncountable sets". A mathematical explanation of the paradox, showing that it is not a contradiction in mathematics, was given by Skolem (1922). Skolem's work was harshly received by Ernst Zermelo, who argued against the limitations of first-order logic, but the result quickly came to be accepted by the mathematical community. The philosophical implications of Skolem's paradox have received much study. One line of inquiry questions whether it is accurate to claim that any first-order sentence actually states "there are uncountable sets". This line of thought can be extended to question whether any set is uncountable in an absolute sense. More recently, the paper "Models and Reality" by Hilary Putnam, and responses to it, led to renewed interest in the philosophical aspects of Skolem's result.".
- Q1096353 wikiPageExternalLink pthesis.pdf.
- Q1096353 wikiPageExternalLink skolem.
- Q1096353 wikiPageExternalLink log39.pdf.
- Q1096353 wikiPageExternalLink 0602-001.ps.
- Q1096353 wikiPageExternalLink 1004-toc.htm.
- Q1096353 wikiPageExternalLink putnam1980.pdf.
- Q1096353 wikiPageExternalLink skolem_moore.htm&date=2009-10-25+04:16:47.
- Q1096353 wikiPageWikiLink Q1003136.
- Q1096353 wikiPageWikiLink Q1068283.
- Q1096353 wikiPageWikiLink Q1128796.
- Q1096353 wikiPageWikiLink Q1149458.
- Q1096353 wikiPageWikiLink Q1166618.
- Q1096353 wikiPageWikiLink Q12482.
- Q1096353 wikiPageWikiLink Q12916.
- Q1096353 wikiPageWikiLink Q1319773.
- Q1096353 wikiPageWikiLink Q1350299.
- Q1096353 wikiPageWikiLink Q1417326.
- Q1096353 wikiPageWikiLink Q1548746.
- Q1096353 wikiPageWikiLink Q15830473.
- Q1096353 wikiPageWikiLink Q1644136.
- Q1096353 wikiPageWikiLink Q17455.
- Q1096353 wikiPageWikiLink Q176916.
- Q1096353 wikiPageWikiLink Q180907.
- Q1096353 wikiPageWikiLink Q18349448.
- Q1096353 wikiPageWikiLink Q18353968.
- Q1096353 wikiPageWikiLink Q1851710.
- Q1096353 wikiPageWikiLink Q185478.
- Q1096353 wikiPageWikiLink Q200787.
- Q1096353 wikiPageWikiLink Q205170.
- Q1096353 wikiPageWikiLink Q21199.
- Q1096353 wikiPageWikiLink Q217595.
- Q1096353 wikiPageWikiLink Q221697.
- Q1096353 wikiPageWikiLink Q262759.
- Q1096353 wikiPageWikiLink Q273188.
- Q1096353 wikiPageWikiLink Q278770.
- Q1096353 wikiPageWikiLink Q33401.
- Q1096353 wikiPageWikiLink Q335148.
- Q1096353 wikiPageWikiLink Q4055684.
- Q1096353 wikiPageWikiLink Q4669873.
- Q1096353 wikiPageWikiLink Q474881.
- Q1096353 wikiPageWikiLink Q483372.
- Q1096353 wikiPageWikiLink Q548080.
- Q1096353 wikiPageWikiLink Q57248.
- Q1096353 wikiPageWikiLink Q5891.
- Q1096353 wikiPageWikiLink Q60.
- Q1096353 wikiPageWikiLink Q6029713.
- Q1096353 wikiPageWikiLink Q703577.
- Q1096353 wikiPageWikiLink Q7363122.
- Q1096353 wikiPageWikiLink Q7451685.
- Q1096353 wikiPageWikiLink Q7456256.
- Q1096353 wikiPageWikiLink Q76420.
- Q1096353 wikiPageWikiLink Q792542.
- Q1096353 wikiPageWikiLink Q8549536.
- Q1096353 wikiPageWikiLink Q902052.
- Q1096353 wikiPageWikiLink Q903508.
- Q1096353 comment "In mathematical logic and philosophy, Skolem's paradox is a seeming contradiction that arises from the downward Löwenheim–Skolem theorem. Thoralf Skolem (1922) was the first to discuss the seemingly contradictory aspects of the theorem, and to discover the relativity of set-theoretic notions now known as non-absoluteness.".
- Q1096353 label "Skolem's paradox".