Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Richardsons_theorem> ?p ?o }
Showing triples 1 to 46 of
46
with 100 triples per page.
- Richardsons_theorem abstract "In mathematics, Richardson's theorem establishes a limit on the extent to which an algorithm can decide whether certain mathematical expressions are equal. It states that for a certain fairly natural class of expressions, it is undecidable whether a particular expression E satisfies the equation E = 0, and similarly undecidable whether the functions defined by expressions E and F are everywhere equal (in fact E = F if and only if E - F = 0). It was proved in 1968 by computer scientist Daniel Richardson of the University of Bath.Specifically, the class of expressions for which the theorem holds is that generated by rational numbers, the number π, the number log 2, the variable x, the operations of addition, subtraction, multiplication, composition, and the sin, exp, and abs functions.For some classes of expressions (generated by other primitives than in Richardson's theorem) there exist algorithms that can determine whether an expression is zero.".
- Richardsons_theorem wikiPageExternalLink AeqB.html.
- Richardsons_theorem wikiPageExternalLink 2271358.
- Richardsons_theorem wikiPageID "13463844".
- Richardsons_theorem wikiPageLength "4799".
- Richardsons_theorem wikiPageOutDegree "19".
- Richardsons_theorem wikiPageRevisionID "665153030".
- Richardsons_theorem wikiPageWikiLink A_K_Peters,_Ltd..
- Richardsons_theorem wikiPageWikiLink Absolute_value.
- Richardsons_theorem wikiPageWikiLink Algorithm.
- Richardsons_theorem wikiPageWikiLink Category:Computability_theory.
- Richardsons_theorem wikiPageWikiLink Category:Theorems_in_the_foundations_of_mathematics.
- Richardsons_theorem wikiPageWikiLink Constant_problem.
- Richardsons_theorem wikiPageWikiLink Daniel_Richardson.
- Richardsons_theorem wikiPageWikiLink Decision_problem.
- Richardsons_theorem wikiPageWikiLink Exponential_function.
- Richardsons_theorem wikiPageWikiLink Function_composition.
- Richardsons_theorem wikiPageWikiLink Hilberts_tenth_problem.
- Richardsons_theorem wikiPageWikiLink Journal_of_Symbolic_Logic.
- Richardsons_theorem wikiPageWikiLink Miklós_Laczkovich.
- Richardsons_theorem wikiPageWikiLink Natural_logarithm.
- Richardsons_theorem wikiPageWikiLink Pi.
- Richardsons_theorem wikiPageWikiLink Sine.
- Richardsons_theorem wikiPageWikiLink Tarski–Seidenberg_theorem.
- Richardsons_theorem wikiPageWikiLink Undecidable_problem.
- Richardsons_theorem wikiPageWikiLink University_of_Bath.
- Richardsons_theorem wikiPageWikiLinkText "Richardson's theorem".
- Richardsons_theorem title "Richardson's theorem".
- Richardsons_theorem urlname "RichardsonsTheorem".
- Richardsons_theorem wikiPageUsesTemplate Template:Cite_book.
- Richardsons_theorem wikiPageUsesTemplate Template:Cite_news.
- Richardsons_theorem wikiPageUsesTemplate Template:Math.
- Richardsons_theorem wikiPageUsesTemplate Template:MathWorld.
- Richardsons_theorem wikiPageUsesTemplate Template:Mathlogic-stub.
- Richardsons_theorem subject Category:Computability_theory.
- Richardsons_theorem subject Category:Theorems_in_the_foundations_of_mathematics.
- Richardsons_theorem type Theorem.
- Richardsons_theorem comment "In mathematics, Richardson's theorem establishes a limit on the extent to which an algorithm can decide whether certain mathematical expressions are equal. It states that for a certain fairly natural class of expressions, it is undecidable whether a particular expression E satisfies the equation E = 0, and similarly undecidable whether the functions defined by expressions E and F are everywhere equal (in fact E = F if and only if E - F = 0).".
- Richardsons_theorem label "Richardson's theorem".
- Richardsons_theorem sameAs Q1249069.
- Richardsons_theorem sameAs Théorème_de_Richardson.
- Richardsons_theorem sameAs Richardson-tétel.
- Richardsons_theorem sameAs m.03c64zk.
- Richardsons_theorem sameAs Q1249069.
- Richardsons_theorem wasDerivedFrom Richardsons_theorem?oldid=665153030.
- Richardsons_theorem isPrimaryTopicOf Richardsons_theorem.