Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Pythagoras_number> ?p ?o }
Showing triples 1 to 35 of
35
with 100 triples per page.
- Pythagoras_number abstract "In mathematics, the Pythagoras number or reduced height of a field describes the structure of the set of squares in the field. The Pythagoras number p(K) of a field K is the smallest positive integer p such that every sum of squares in K is a sum of p squares.A Pythagorean field is one with Pythagoras number 1: that is, every sum of squares is already a square.".
- Pythagoras_number wikiPageID "36818246".
- Pythagoras_number wikiPageLength "2651".
- Pythagoras_number wikiPageOutDegree "11".
- Pythagoras_number wikiPageRevisionID "675189822".
- Pythagoras_number wikiPageWikiLink Cambridge_University_Press.
- Pythagoras_number wikiPageWikiLink Category:Field_theory.
- Pythagoras_number wikiPageWikiLink Category:Sumsets.
- Pythagoras_number wikiPageWikiLink Field_(mathematics).
- Pythagoras_number wikiPageWikiLink Finite_field.
- Pythagoras_number wikiPageWikiLink Formally_real_field.
- Pythagoras_number wikiPageWikiLink Graduate_Studies_in_Mathematics.
- Pythagoras_number wikiPageWikiLink Lagranges_four-square_theorem.
- Pythagoras_number wikiPageWikiLink Pythagorean_field.
- Pythagoras_number wikiPageWikiLink Stufe_(algebra).
- Pythagoras_number wikiPageWikiLink Witt_group.
- Pythagoras_number wikiPageWikiLinkText "Pythagoras number".
- Pythagoras_number wikiPageUsesTemplate Template:Algebra-stub.
- Pythagoras_number wikiPageUsesTemplate Template:Cite_book.
- Pythagoras_number wikiPageUsesTemplate Template:Confuse.
- Pythagoras_number wikiPageUsesTemplate Template:Reflist.
- Pythagoras_number subject Category:Field_theory.
- Pythagoras_number subject Category:Sumsets.
- Pythagoras_number type Combinatoric.
- Pythagoras_number type Thing.
- Pythagoras_number comment "In mathematics, the Pythagoras number or reduced height of a field describes the structure of the set of squares in the field. The Pythagoras number p(K) of a field K is the smallest positive integer p such that every sum of squares in K is a sum of p squares.A Pythagorean field is one with Pythagoras number 1: that is, every sum of squares is already a square.".
- Pythagoras_number label "Pythagoras number".
- Pythagoras_number differentFrom Square_root_of_2.
- Pythagoras_number sameAs Q2120051.
- Pythagoras_number sameAs Pythagoraszahl.
- Pythagoras_number sameAs Nombre_de_Pythagore.
- Pythagoras_number sameAs m.0ll2p68.
- Pythagoras_number sameAs Q2120051.
- Pythagoras_number wasDerivedFrom Pythagoras_number?oldid=675189822.
- Pythagoras_number isPrimaryTopicOf Pythagoras_number.