Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Fundamental_lemma_of_calculus_of_variations> ?p ?o }
Showing triples 1 to 68 of
68
with 100 triples per page.
- Fundamental_lemma_of_calculus_of_variations abstract "In mathematics, specifically in the calculus of variations, a variation δf of a function f can be concentrated on an arbitrarily small interval, but not a single point.Accordingly, the necessary condition of extremum (functional derivative equal zero) appears in a weak formulation (variational form) integrated with an arbitrary function δf. The fundamental lemma of the calculus of variations is typically used to transform this weak formulation into the strong formulation (differential equation), free of the integration with arbitrary function. The proof usually exploits the possibility to choose δf concentrated on an interval on which f keeps sign (positive or negative). Several versions of the lemma are in use. Basic versions are easy to formulate and prove. More powerful versions are used when needed.".
- Fundamental_lemma_of_calculus_of_variations wikiPageID "2461914".
- Fundamental_lemma_of_calculus_of_variations wikiPageLength "8070".
- Fundamental_lemma_of_calculus_of_variations wikiPageOutDegree "31".
- Fundamental_lemma_of_calculus_of_variations wikiPageRevisionID "665379142".
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Absolute_continuity.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Almost_everywhere.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Calculus_of_variations.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Category:Calculus_of_variations.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Category:Classical_mechanics.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Category:Fundamental_theorems.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Category:Lemmas.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Category:Smooth_functions.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Classical_mechanics.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Constant_function.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Differentiable_function.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Differential_equation.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Differential_geometry.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Euler–Lagrange_equation.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Function_of_several_real_variables.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Functional_(mathematics).
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Functional_derivative.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Integration_by_parts.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Joseph-Louis_Lagrange.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Lebesgue_integration.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Locally_integrable_function.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Mathematics.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Maxima_and_minima.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Paul_du_Bois-Reymond.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Piecewise.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Riemann_integral.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Smoothness.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Support_(mathematics).
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Vector-valued_function.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Weak_formulation.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLink Weak_solution.
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLinkText "Fundamental lemma of calculus of variations".
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLinkText "Fundamental_lemma_of_calculus_of_variations".
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLinkText "fundamental lemma of calculus of variations".
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLinkText "fundamental lemma of variational calculus".
- Fundamental_lemma_of_calculus_of_variations wikiPageWikiLinkText "lemma".
- Fundamental_lemma_of_calculus_of_variations wikiPageUsesTemplate Template:Citation.
- Fundamental_lemma_of_calculus_of_variations wikiPageUsesTemplate Template:Fundamental_theorems.
- Fundamental_lemma_of_calculus_of_variations wikiPageUsesTemplate Template:Math.
- Fundamental_lemma_of_calculus_of_variations subject Category:Calculus_of_variations.
- Fundamental_lemma_of_calculus_of_variations subject Category:Classical_mechanics.
- Fundamental_lemma_of_calculus_of_variations subject Category:Fundamental_theorems.
- Fundamental_lemma_of_calculus_of_variations subject Category:Lemmas.
- Fundamental_lemma_of_calculus_of_variations subject Category:Smooth_functions.
- Fundamental_lemma_of_calculus_of_variations type Type.
- Fundamental_lemma_of_calculus_of_variations type Function.
- Fundamental_lemma_of_calculus_of_variations type Lemma.
- Fundamental_lemma_of_calculus_of_variations type Mechanic.
- Fundamental_lemma_of_calculus_of_variations type Physic.
- Fundamental_lemma_of_calculus_of_variations type Source.
- Fundamental_lemma_of_calculus_of_variations type Theorem.
- Fundamental_lemma_of_calculus_of_variations type Type.
- Fundamental_lemma_of_calculus_of_variations comment "In mathematics, specifically in the calculus of variations, a variation δf of a function f can be concentrated on an arbitrarily small interval, but not a single point.Accordingly, the necessary condition of extremum (functional derivative equal zero) appears in a weak formulation (variational form) integrated with an arbitrary function δf.".
- Fundamental_lemma_of_calculus_of_variations label "Fundamental lemma of calculus of variations".
- Fundamental_lemma_of_calculus_of_variations sameAs Q2474925.
- Fundamental_lemma_of_calculus_of_variations sameAs Lemme_fondamental_du_calcul_des_variations.
- Fundamental_lemma_of_calculus_of_variations sameAs Lemma_fondamentale_del_calcolo_delle_variazioni.
- Fundamental_lemma_of_calculus_of_variations sameAs Lema_fundamental_do_cálculo_das_variações.
- Fundamental_lemma_of_calculus_of_variations sameAs m.07fsbc.
- Fundamental_lemma_of_calculus_of_variations sameAs Q2474925.
- Fundamental_lemma_of_calculus_of_variations sameAs 變分法基本引理.
- Fundamental_lemma_of_calculus_of_variations wasDerivedFrom Fundamental_lemma_of_calculus_of_variations?oldid=665379142.
- Fundamental_lemma_of_calculus_of_variations isPrimaryTopicOf Fundamental_lemma_of_calculus_of_variations.