Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Buckingham_π_theorem> ?p ?o }
Showing triples 1 to 83 of
83
with 100 triples per page.
- Buckingham_π_theorem abstract "In engineering, applied mathematics, and physics, the Buckingham π theorem is a key theorem in dimensional analysis. It is a formalization of Rayleigh's method of dimensional analysis. Loosely, the theorem states that if there is a physically meaningful equation involving a certain number n of physical variables, then the original equation can be rewritten in terms of a set of p = n − k dimensionless parameters π1, π2, ..., πp constructed from the original variables. (Here k is the number of physical dimensions involved; it is obtained as the rank of a particular matrix.)The theorem can be seen as a scheme for nondimensionalization because it provides a method for computing sets of dimensionless parameters from the given variables, even if the form of the equation is still unknown.".
- Buckingham_π_theorem wikiPageExternalLink buckingham-a4.pdf.
- Buckingham_π_theorem wikiPageExternalLink maxent.pdf.
- Buckingham_π_theorem wikiPageExternalLink 175.
- Buckingham_π_theorem wikiPageExternalLink multanal.html.
- Buckingham_π_theorem wikiPageExternalLink pi-theorem-history.htm.
- Buckingham_π_theorem wikiPageExternalLink constants.html.
- Buckingham_π_theorem wikiPageID "51399".
- Buckingham_π_theorem wikiPageLength "19287".
- Buckingham_π_theorem wikiPageOutDegree "43".
- Buckingham_π_theorem wikiPageRevisionID "706383269".
- Buckingham_π_theorem wikiPageWikiLink Annales_Télégraphiques.
- Buckingham_π_theorem wikiPageWikiLink Blast_wave.
- Buckingham_π_theorem wikiPageWikiLink Buckingham_π_theorem.
- Buckingham_π_theorem wikiPageWikiLink Category:Articles_containing_proofs.
- Buckingham_π_theorem wikiPageWikiLink Category:Dimensional_analysis.
- Buckingham_π_theorem wikiPageWikiLink Category:Physics_theorems.
- Buckingham_π_theorem wikiPageWikiLink Dimensional_analysis.
- Buckingham_π_theorem wikiPageWikiLink Dimensionless_quantity.
- Buckingham_π_theorem wikiPageWikiLink Dimitri_Riabouchinsky.
- Buckingham_π_theorem wikiPageWikiLink Edgar_Buckingham.
- Buckingham_π_theorem wikiPageWikiLink Gaussian_elimination.
- Buckingham_π_theorem wikiPageWikiLink John_William_Strutt,_3rd_Baron_Rayleigh.
- Buckingham_π_theorem wikiPageWikiLink Joseph_Bertrand.
- Buckingham_π_theorem wikiPageWikiLink Kernel_(linear_algebra).
- Buckingham_π_theorem wikiPageWikiLink Matrix_(mathematics).
- Buckingham_π_theorem wikiPageWikiLink Natural_units.
- Buckingham_π_theorem wikiPageWikiLink Nature_(journal).
- Buckingham_π_theorem wikiPageWikiLink Nondimensionalization.
- Buckingham_π_theorem wikiPageWikiLink Physical_Review.
- Buckingham_π_theorem wikiPageWikiLink Proceedings_of_the_Royal_Society.
- Buckingham_π_theorem wikiPageWikiLink Rank_(linear_algebra).
- Buckingham_π_theorem wikiPageWikiLink Rank–nullity_theorem.
- Buckingham_π_theorem wikiPageWikiLink Rational_number.
- Buckingham_π_theorem wikiPageWikiLink Rayleighs_method_of_dimensional_analysis.
- Buckingham_π_theorem wikiPageWikiLink Row_echelon_form.
- Buckingham_π_theorem wikiPageWikiLink Similarity_(geometry).
- Buckingham_π_theorem wikiPageWikiLink Similitude_(model).
- Buckingham_π_theorem wikiPageWikiLink Small-angle_approximation.
- Buckingham_π_theorem wikiPageWikiLink Standard_gravity.
- Buckingham_π_theorem wikiPageWikiLink Theorem.
- Buckingham_π_theorem wikiPageWikiLink Transactions_of_the_American_Society_of_Mechanical_Engineers.
- Buckingham_π_theorem wikiPageWikiLink Vector_space.
- Buckingham_π_theorem wikiPageWikiLink File:Pendel_PT.svg.
- Buckingham_π_theorem wikiPageWikiLinkText "Buckingham Pi theorem".
- Buckingham_π_theorem wikiPageWikiLinkText "Buckingham π theorem".
- Buckingham_π_theorem wikiPageWikiLinkText "dimensional matrix".
- Buckingham_π_theorem wikiPageWikiLinkText "the Buckingham Pi theorem".
- Buckingham_π_theorem wikiPageWikiLinkText "π theorem".
- Buckingham_π_theorem wikiPageUsesTemplate Template:Cite_book.
- Buckingham_π_theorem wikiPageUsesTemplate Template:Cite_journal.
- Buckingham_π_theorem wikiPageUsesTemplate Template:Cite_web.
- Buckingham_π_theorem wikiPageUsesTemplate Template:Pi.
- Buckingham_π_theorem subject Category:Articles_containing_proofs.
- Buckingham_π_theorem subject Category:Dimensional_analysis.
- Buckingham_π_theorem subject Category:Physics_theorems.
- Buckingham_π_theorem hypernym Theorem.
- Buckingham_π_theorem type Diacritic.
- Buckingham_π_theorem type Law.
- Buckingham_π_theorem type Physic.
- Buckingham_π_theorem type Proof.
- Buckingham_π_theorem type Redirect.
- Buckingham_π_theorem type Theorem.
- Buckingham_π_theorem comment "In engineering, applied mathematics, and physics, the Buckingham π theorem is a key theorem in dimensional analysis. It is a formalization of Rayleigh's method of dimensional analysis. Loosely, the theorem states that if there is a physically meaningful equation involving a certain number n of physical variables, then the original equation can be rewritten in terms of a set of p = n − k dimensionless parameters π1, π2, ..., πp constructed from the original variables.".
- Buckingham_π_theorem label "Buckingham π theorem".
- Buckingham_π_theorem sameAs Q999783.
- Buckingham_π_theorem sameAs Пі-тэарэма.
- Buckingham_π_theorem sameAs Teorema_de_Pi-Buckingham.
- Buckingham_π_theorem sameAs Buckinghamsches_Π-Theorem.
- Buckingham_π_theorem sameAs Teorema_π_de_Vaschy-Buckingham.
- Buckingham_π_theorem sameAs نظریه_پی_باکینگهام.
- Buckingham_π_theorem sameAs Buckinghamin_π-teoreema.
- Buckingham_π_theorem sameAs Théorème_de_Vaschy-Buckingham.
- Buckingham_π_theorem sameAs Teorema_di_Buckingham.
- Buckingham_π_theorem sameAs Buckingham-π-theorema.
- Buckingham_π_theorem sameAs Twierdzenie_Buckinghama.
- Buckingham_π_theorem sameAs Teorema_π_de_Vaschy-Buckingham.
- Buckingham_π_theorem sameAs m.0dkfq.
- Buckingham_π_theorem sameAs Пи-теорема.
- Buckingham_π_theorem sameAs Buckinghamov_izrek_π.
- Buckingham_π_theorem sameAs Q999783.
- Buckingham_π_theorem wasDerivedFrom Buckingham_π_theorem?oldid=706383269.
- Buckingham_π_theorem isPrimaryTopicOf Buckingham_π_theorem.