Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Base_change_lifting> ?p ?o }
Showing triples 1 to 47 of
47
with 100 triples per page.
- Base_change_lifting abstract "In mathematics, base change lifting is a method of constructing new automorphic forms from old ones, that corresponds in Langlands philosophy to the operation of restricting a representation of a Galois group to a subgroup. The Doi–Naganuma lifting from 1967 was a precursor of the base change lifting. Base change lifting was introduced by Hiroshi Saito (1975, 1975b, 1979) for Hilbert modular forms of cyclic totally real fields of prime degree, by comparing the trace of twisted Hecke operators on Hilbert modular forms with the trace of Hecke operators on ordinary modular forms. Shintani (1979) gave a representation theoretic interpretation of Saito's results and used this to generalize them. Langlands (1980) extended the base change lifting to more general automorphic forms and showed how to use the base change lifting for GL2 to prove the Artin conjecture for tetrahedral and some octahedral 2-dimensional representations of the Galois group.Gelbart (1977), Gérardin (1979) and Gérardin & Labesse (1979) gave expositions of the base change lifting for GL2 and its applications to the Artin conjecture.".
- Base_change_lifting wikiPageExternalLink lmku08.pdf.
- Base_change_lifting wikiPageExternalLink 1250522471.
- Base_change_lifting wikiPageExternalLink 1195518624.
- Base_change_lifting wikiPageExternalLink 64.
- Base_change_lifting wikiPageExternalLink pspum332-index.
- Base_change_lifting wikiPageExternalLink pspum332-pspum332-ptIII-5.pdf.
- Base_change_lifting wikiPageExternalLink 30.pdf.
- Base_change_lifting wikiPageExternalLink item?id=SB_1977-1978__20__65_0.
- Base_change_lifting wikiPageID "32338538".
- Base_change_lifting wikiPageLength "5709".
- Base_change_lifting wikiPageOutDegree "18".
- Base_change_lifting wikiPageRevisionID "644519278".
- Base_change_lifting wikiPageWikiLink American_Mathematical_Society.
- Base_change_lifting wikiPageWikiLink Artin_conjecture.
- Base_change_lifting wikiPageWikiLink Automorphic_form.
- Base_change_lifting wikiPageWikiLink Category:Langlands_program.
- Base_change_lifting wikiPageWikiLink Doi–Naganuma_lifting.
- Base_change_lifting wikiPageWikiLink Galois_extension.
- Base_change_lifting wikiPageWikiLink Galois_group.
- Base_change_lifting wikiPageWikiLink Global_field.
- Base_change_lifting wikiPageWikiLink Hecke_operator.
- Base_change_lifting wikiPageWikiLink Hilbert_modular_form.
- Base_change_lifting wikiPageWikiLink Langlands_program.
- Base_change_lifting wikiPageWikiLink Mathematics.
- Base_change_lifting wikiPageWikiLink Princeton_University_Press.
- Base_change_lifting wikiPageWikiLink Springer_Science+Business_Media.
- Base_change_lifting wikiPageWikiLinkText "Base change lifting".
- Base_change_lifting wikiPageWikiLinkText "base change lifting".
- Base_change_lifting authorlink "Hiroshi Saito".
- Base_change_lifting first "Hiroshi".
- Base_change_lifting last "Saito".
- Base_change_lifting wikiPageUsesTemplate Template:Citation.
- Base_change_lifting wikiPageUsesTemplate Template:Harvs.
- Base_change_lifting wikiPageUsesTemplate Template:Harvtxt.
- Base_change_lifting year "1975".
- Base_change_lifting year "1979".
- Base_change_lifting subject Category:Langlands_program.
- Base_change_lifting hypernym Method.
- Base_change_lifting type Software.
- Base_change_lifting comment "In mathematics, base change lifting is a method of constructing new automorphic forms from old ones, that corresponds in Langlands philosophy to the operation of restricting a representation of a Galois group to a subgroup. The Doi–Naganuma lifting from 1967 was a precursor of the base change lifting.".
- Base_change_lifting label "Base change lifting".
- Base_change_lifting sameAs Q4866383.
- Base_change_lifting sameAs m.0gyt0fm.
- Base_change_lifting sameAs Q4866383.
- Base_change_lifting wasDerivedFrom Base_change_lifting?oldid=644519278.
- Base_change_lifting isPrimaryTopicOf Base_change_lifting.