Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Argument_shift_method> ?p ?o }
Showing triples 1 to 22 of
22
with 100 triples per page.
- Argument_shift_method abstract "In mathematics, the argument shift method is a method for constructing functions in involution with respect to Poisson–Lie brackets, introduced by Mishchenko and Fomenko (1978). They used it to prove that the Poisson algebra of a finite-dimensional semisimple Lie algebra contains a complete commuting set of polynomials.".
- Argument_shift_method wikiPageID "37807263".
- Argument_shift_method wikiPageLength "764".
- Argument_shift_method wikiPageOutDegree "4".
- Argument_shift_method wikiPageRevisionID "626829446".
- Argument_shift_method wikiPageWikiLink Category:Lie_algebras.
- Argument_shift_method wikiPageWikiLink Poisson_algebra.
- Argument_shift_method wikiPageWikiLink Poisson–Lie_group.
- Argument_shift_method wikiPageWikiLink Semisimple_Lie_algebra.
- Argument_shift_method wikiPageUsesTemplate Template:Citation.
- Argument_shift_method wikiPageUsesTemplate Template:Harvs.
- Argument_shift_method subject Category:Lie_algebras.
- Argument_shift_method hypernym Method.
- Argument_shift_method type Software.
- Argument_shift_method type Algebra.
- Argument_shift_method comment "In mathematics, the argument shift method is a method for constructing functions in involution with respect to Poisson–Lie brackets, introduced by Mishchenko and Fomenko (1978). They used it to prove that the Poisson algebra of a finite-dimensional semisimple Lie algebra contains a complete commuting set of polynomials.".
- Argument_shift_method label "Argument shift method".
- Argument_shift_method sameAs Q4789751.
- Argument_shift_method sameAs m.0nhgsjb.
- Argument_shift_method sameAs Q4789751.
- Argument_shift_method wasDerivedFrom Argument_shift_method?oldid=626829446.
- Argument_shift_method isPrimaryTopicOf Argument_shift_method.