Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Weil_pairing> ?p ?o }
Showing triples 1 to 73 of
73
with 100 triples per page.
- Weil_pairing abstract "In mathematics, the Weil pairing is a pairing (bilinear form, though with multiplicative notation) on the points of order dividing n of an elliptic curve E, taking values in nth roots of unity. More generally there is a similar Weil pairing between points of order n of an abelian variety and its dual. It was introduced by André Weil (1940) for Jacobians of curves, who gave an abstract algebraic definition; the corresponding results for elliptic functions were known, and can be expressed simply by use of the Weierstrass sigma function.".
- Weil_pairing wikiPageExternalLink pair-over-C.pdf.
- Weil_pairing wikiPageID "1131644".
- Weil_pairing wikiPageLength "5275".
- Weil_pairing wikiPageOutDegree "37".
- Weil_pairing wikiPageRevisionID "668433086".
- Weil_pairing wikiPageWikiLink Abelian_varieties.
- Weil_pairing wikiPageWikiLink Abelian_variety.
- Weil_pairing wikiPageWikiLink Algebraic_closure.
- Weil_pairing wikiPageWikiLink Algebraic_geometry.
- Weil_pairing wikiPageWikiLink André_Weil.
- Weil_pairing wikiPageWikiLink Ate_pairing.
- Weil_pairing wikiPageWikiLink Autoduality_of_Jacobians.
- Weil_pairing wikiPageWikiLink Bilinear_form.
- Weil_pairing wikiPageWikiLink Boneh–Franklin_scheme.
- Weil_pairing wikiPageWikiLink Cartesian_product.
- Weil_pairing wikiPageWikiLink Category:Abelian_varieties.
- Weil_pairing wikiPageWikiLink Category:Elliptic_curves.
- Weil_pairing wikiPageWikiLink Category:Pairing-based_cryptography.
- Weil_pairing wikiPageWikiLink Comptes_rendus_de_lAcadxc3xa9mie_des_sciences.
- Weil_pairing wikiPageWikiLink Cyclic_group.
- Weil_pairing wikiPageWikiLink Divisor.
- Weil_pairing wikiPageWikiLink Divisor_(algebraic_geometry).
- Weil_pairing wikiPageWikiLink Divisors.
- Weil_pairing wikiPageWikiLink Dual_abelian_variety.
- Weil_pairing wikiPageWikiLink Elliptic_curve_cryptography.
- Weil_pairing wikiPageWikiLink Elliptic_function.
- Weil_pairing wikiPageWikiLink Eta_pairing.
- Weil_pairing wikiPageWikiLink Field_(mathematics).
- Weil_pairing wikiPageWikiLink Function_field_of_an_algebraic_variety.
- Weil_pairing wikiPageWikiLink Homomorphic_Signatures_for_Network_Coding.
- Weil_pairing wikiPageWikiLink Homomorphic_signatures_for_network_coding.
- Weil_pairing wikiPageWikiLink ID-based_encryption.
- Weil_pairing wikiPageWikiLink Identity_based_encryption.
- Weil_pairing wikiPageWikiLink Jacobian_variety.
- Weil_pairing wikiPageWikiLink Kummer_theory.
- Weil_pairing wikiPageWikiLink Les_Comptes_rendus_de_lAcadxc3xa9mie_des_sciences.
- Weil_pairing wikiPageWikiLink Mathematics.
- Weil_pairing wikiPageWikiLink Multiplicative_group.
- Weil_pairing wikiPageWikiLink Multiplicative_notation.
- Weil_pairing wikiPageWikiLink Number_theory.
- Weil_pairing wikiPageWikiLink Pairing.
- Weil_pairing wikiPageWikiLink Pairing-based_cryptography.
- Weil_pairing wikiPageWikiLink Primitive_nth_root_of_unity.
- Weil_pairing wikiPageWikiLink Root_of_unity.
- Weil_pairing wikiPageWikiLink Tate_module.
- Weil_pairing wikiPageWikiLink Tate_pairing.
- Weil_pairing wikiPageWikiLink Theta-divisor.
- Weil_pairing wikiPageWikiLink Theta_divisor.
- Weil_pairing wikiPageWikiLink Weierstrass_functions.
- Weil_pairing wikiPageWikiLink Weierstrass_sigma_function.
- Weil_pairing wikiPageWikiLinkText "Weil and Tate pairings".
- Weil_pairing wikiPageWikiLinkText "Weil pairing".
- Weil_pairing wikiPageWikiLinkText "Weil".
- Weil_pairing hasPhotoCollection Weil_pairing.
- Weil_pairing wikiPageUsesTemplate Template:Citation.
- Weil_pairing wikiPageUsesTemplate Template:Harvid.
- Weil_pairing wikiPageUsesTemplate Template:Reflist.
- Weil_pairing subject Category:Abelian_varieties.
- Weil_pairing subject Category:Elliptic_curves.
- Weil_pairing subject Category:Pairing-based_cryptography.
- Weil_pairing type Group.
- Weil_pairing type Function.
- Weil_pairing type Group.
- Weil_pairing type Variety.
- Weil_pairing comment "In mathematics, the Weil pairing is a pairing (bilinear form, though with multiplicative notation) on the points of order dividing n of an elliptic curve E, taking values in nth roots of unity. More generally there is a similar Weil pairing between points of order n of an abelian variety and its dual.".
- Weil_pairing label "Weil pairing".
- Weil_pairing sameAs m.048_j4.
- Weil_pairing sameAs Q7980191.
- Weil_pairing sameAs Q7980191.
- Weil_pairing sameAs 韦伊配对.
- Weil_pairing wasDerivedFrom Weil_pairing?oldid=668433086.
- Weil_pairing isPrimaryTopicOf Weil_pairing.