Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Van_der_Waerden_number> ?p ?o }
Showing triples 1 to 41 of
41
with 100 triples per page.
- Van_der_Waerden_number abstract "Van der Waerden's theorem states that for any positive integers r and k there exists a positive integer N such that if the integers {1, 2, ..., N} are colored, each with one of r different colors, then there are at least k integers in arithmetic progression all of the same color. The smallest such N is the van der Waerden number W(r,k).".
- Van_der_Waerden_number wikiPageExternalLink vdw.html.
- Van_der_Waerden_number wikiPageExternalLink v14i1r6.html.
- Van_der_Waerden_number wikiPageID "8443164".
- Van_der_Waerden_number wikiPageLength "19428".
- Van_der_Waerden_number wikiPageOutDegree "12".
- Van_der_Waerden_number wikiPageRevisionID "683071877".
- Van_der_Waerden_number wikiPageWikiLink Arithmetic_progression.
- Van_der_Waerden_number wikiPageWikiLink Category:Ramsey_theory.
- Van_der_Waerden_number wikiPageWikiLink Electronic_Journal_of_Combinatorics.
- Van_der_Waerden_number wikiPageWikiLink Elwyn_Berlekamp.
- Van_der_Waerden_number wikiPageWikiLink Graph_coloring.
- Van_der_Waerden_number wikiPageWikiLink Grzegorczyk_hierarchy.
- Van_der_Waerden_number wikiPageWikiLink Natural_number.
- Van_der_Waerden_number wikiPageWikiLink Primitive_recursive.
- Van_der_Waerden_number wikiPageWikiLink Primitive_recursive_function.
- Van_der_Waerden_number wikiPageWikiLink Ramsey_number.
- Van_der_Waerden_number wikiPageWikiLink Ramseys_theorem.
- Van_der_Waerden_number wikiPageWikiLink Saharon_Shelah.
- Van_der_Waerden_number wikiPageWikiLink The_Electronic_Journal_of_Combinatorics.
- Van_der_Waerden_number wikiPageWikiLink Timothy_Gowers.
- Van_der_Waerden_number wikiPageWikiLink Van_der_Waerdens_theorem.
- Van_der_Waerden_number wikiPageWikiLinkText "Van der Waerden number".
- Van_der_Waerden_number author "O'Bryant, Kevin and Weisstein, Eric W.".
- Van_der_Waerden_number hasPhotoCollection Van_der_Waerden_number.
- Van_der_Waerden_number title "Van der Waerden Number".
- Van_der_Waerden_number urlname "vanderWaerdenNumber".
- Van_der_Waerden_number wikiPageUsesTemplate Template:Cite_book.
- Van_der_Waerden_number wikiPageUsesTemplate Template:Cite_journal.
- Van_der_Waerden_number wikiPageUsesTemplate Template:Cite_web.
- Van_der_Waerden_number wikiPageUsesTemplate Template:MathWorld.
- Van_der_Waerden_number wikiPageUsesTemplate Template:Reflist.
- Van_der_Waerden_number subject Category:Ramsey_theory.
- Van_der_Waerden_number type Combinatoric.
- Van_der_Waerden_number comment "Van der Waerden's theorem states that for any positive integers r and k there exists a positive integer N such that if the integers {1, 2, ..., N} are colored, each with one of r different colors, then there are at least k integers in arithmetic progression all of the same color. The smallest such N is the van der Waerden number W(r,k).".
- Van_der_Waerden_number label "Van der Waerden number".
- Van_der_Waerden_number sameAs m.0273m81.
- Van_der_Waerden_number sameAs Q7913892.
- Van_der_Waerden_number sameAs Q7913892.
- Van_der_Waerden_number wasDerivedFrom Van_der_Waerden_number?oldid=683071877.
- Van_der_Waerden_number isPrimaryTopicOf Van_der_Waerden_number.