Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Thurston–Bennequin_number> ?p ?o }
Showing triples 1 to 28 of
28
with 100 triples per page.
- Thurston–Bennequin_number abstract "In the mathematical theory of knots, the Thurston–Bennequin number, or Bennequin number, of a front diagram of a Legendrian knot is defined as the writhe of the diagram minus the number of right cusps. It is named after William Thurston and Daniel Bennequin.The maximum Thurston–Bennequin number over all Legendrian representatives of a knot is a topological knot invariant.".
- Thurston–Bennequin_number wikiPageID "7418819".
- Thurston–Bennequin_number wikiPageLength "924".
- Thurston–Bennequin_number wikiPageOutDegree "9".
- Thurston–Bennequin_number wikiPageRevisionID "627090785".
- Thurston–Bennequin_number wikiPageWikiLink Category:Knot_theory.
- Thurston–Bennequin_number wikiPageWikiLink Cusp_(singularity).
- Thurston–Bennequin_number wikiPageWikiLink Knot_invariant.
- Thurston–Bennequin_number wikiPageWikiLink Knot_theory.
- Thurston–Bennequin_number wikiPageWikiLink Lee_Rudolph.
- Thurston–Bennequin_number wikiPageWikiLink Legendrian_knot.
- Thurston–Bennequin_number wikiPageWikiLink Proceedings_of_the_American_Mathematical_Society.
- Thurston–Bennequin_number wikiPageWikiLink William_Thurston.
- Thurston–Bennequin_number wikiPageWikiLink Writhe.
- Thurston–Bennequin_number wikiPageWikiLinkText "Thurston–Bennequin invariant".
- Thurston–Bennequin_number wikiPageWikiLinkText "Thurston–Bennequin number".
- Thurston–Bennequin_number hasPhotoCollection Thurston–Bennequin_number.
- Thurston–Bennequin_number wikiPageUsesTemplate Template:Cite_journal.
- Thurston–Bennequin_number wikiPageUsesTemplate Template:Knot_Atlas.
- Thurston–Bennequin_number wikiPageUsesTemplate Template:Knottheory-stub.
- Thurston–Bennequin_number subject Category:Knot_theory.
- Thurston–Bennequin_number comment "In the mathematical theory of knots, the Thurston–Bennequin number, or Bennequin number, of a front diagram of a Legendrian knot is defined as the writhe of the diagram minus the number of right cusps. It is named after William Thurston and Daniel Bennequin.The maximum Thurston–Bennequin number over all Legendrian representatives of a knot is a topological knot invariant.".
- Thurston–Bennequin_number label "Thurston–Bennequin number".
- Thurston–Bennequin_number sameAs m.02610j2.
- Thurston–Bennequin_number sameAs Q7799465.
- Thurston–Bennequin_number sameAs Q7799465.
- Thurston–Bennequin_number wasDerivedFrom Thurston–Bennequin_number?oldid=627090785.
- Thurston–Bennequin_number isPrimaryTopicOf Thurston–Bennequin_number.