Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Solovay_model> ?p ?o }
Showing triples 1 to 54 of
54
with 100 triples per page.
- Solovay_model abstract "In the mathematical field of set theory, the Solovay model is a model constructed by Robert M. Solovay (1970) in which all of the axioms of Zermelo–Fraenkel set theory (ZF) hold, exclusive of the axiom of choice, but in which all sets of real numbers are Lebesgue measurable. The construction relies on the existence of an inaccessible cardinal.In this way Solovay showed that the axiom of choice is essential to the proof of the existence of a non-measurable set, at least granted that the existence of an inaccessible cardinal is consistent with ZFC, the axioms of Zermelo–Fraenkel set theory including the axiom of choice.".
- Solovay_model wikiPageID "25274967".
- Solovay_model wikiPageLength "7631".
- Solovay_model wikiPageOutDegree "21".
- Solovay_model wikiPageRevisionID "672097743".
- Solovay_model wikiPageWikiLink Annals_of_Mathematics.
- Solovay_model wikiPageWikiLink Axiom_of_choice.
- Solovay_model wikiPageWikiLink Axiom_of_dependent_choice.
- Solovay_model wikiPageWikiLink Baire_property.
- Solovay_model wikiPageWikiLink Category:Large_cardinals.
- Solovay_model wikiPageWikiLink Category:Measure_theory.
- Solovay_model wikiPageWikiLink Category:Set_theory.
- Solovay_model wikiPageWikiLink Collapsing_algebra.
- Solovay_model wikiPageWikiLink Forcing_(mathematics).
- Solovay_model wikiPageWikiLink Forcing_extension.
- Solovay_model wikiPageWikiLink Inaccessible_cardinal.
- Solovay_model wikiPageWikiLink Inner_model.
- Solovay_model wikiPageWikiLink Lebesgue_measurable.
- Solovay_model wikiPageWikiLink Lebesgue_measure.
- Solovay_model wikiPageWikiLink Levy_collapse.
- Solovay_model wikiPageWikiLink Model_theory.
- Solovay_model wikiPageWikiLink Non-measurable_set.
- Solovay_model wikiPageWikiLink Perfect_set_property.
- Solovay_model wikiPageWikiLink Property_of_Baire.
- Solovay_model wikiPageWikiLink Real_number.
- Solovay_model wikiPageWikiLink Set_(mathematics).
- Solovay_model wikiPageWikiLink Set_theory.
- Solovay_model wikiPageWikiLink Supercompact_cardinal.
- Solovay_model wikiPageWikiLink Tarskis_undefinability_theorem.
- Solovay_model wikiPageWikiLink Zermelo–Fraenkel_set_theory.
- Solovay_model wikiPageWikiLinkText "Solovay model".
- Solovay_model authorlink "Robert M. Solovay".
- Solovay_model b "3".
- Solovay_model first "Robert M.".
- Solovay_model hasPhotoCollection Solovay_model.
- Solovay_model last "Solovay".
- Solovay_model p "1".
- Solovay_model wikiPageUsesTemplate Template:Citation.
- Solovay_model wikiPageUsesTemplate Template:Harvs.
- Solovay_model wikiPageUsesTemplate Template:Harvtxt.
- Solovay_model wikiPageUsesTemplate Template:Su.
- Solovay_model year "1970".
- Solovay_model subject Category:Large_cardinals.
- Solovay_model subject Category:Measure_theory.
- Solovay_model subject Category:Set_theory.
- Solovay_model hypernym Model.
- Solovay_model type Person.
- Solovay_model comment "In the mathematical field of set theory, the Solovay model is a model constructed by Robert M. Solovay (1970) in which all of the axioms of Zermelo–Fraenkel set theory (ZF) hold, exclusive of the axiom of choice, but in which all sets of real numbers are Lebesgue measurable.".
- Solovay_model label "Solovay model".
- Solovay_model sameAs m.09gcr4d.
- Solovay_model sameAs Q7558851.
- Solovay_model sameAs Q7558851.
- Solovay_model wasDerivedFrom Solovay_model?oldid=672097743.
- Solovay_model isPrimaryTopicOf Solovay_model.