Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Savitzky–Golay_filter> ?p ?o }
- Savitzky–Golay_filter abstract "A Savitzky–Golay filter is a digital filter that can be applied to a set of digital data points for the purpose of smoothing the data, that is, to increase the signal-to-noise ratio without greatly distorting the signal. This is achieved, in a process known as convolution, by fitting successive sub-sets of adjacent data points with a low-degree polynomial by the method of linear least squares . When the data points are equally spaced an analytical solution to the least-squares equations can be found, in the form of a single set of "convolution coefficients" that can be applied to all data sub-sets, to give estimates of the smoothed signal, (or derivatives of the smoothed signal) at the central point of each sub-set. The method, based on established mathematical procedures, was popularized by Abraham Savitzky and Marcel J. E. Golay who published tables of convolution coefficients for various polynomials and sub-set sizes in 1964. Some errors in the tables have been corrected. The method has been extended for the treatment of 2- and 3-dimensional data.Savitzky and Golay's paper is one of the most widely cited papers in the journal Analytical Chemistry and is classed by that journal as one of its "10 seminal papers" saying "it can be argued that the dawn of the computer-controlled analytical instrument can be traced to this article".".
- Savitzky–Golay_filter thumbnail Lissage_sg3_anim.gif?width=300.
- Savitzky–Golay_filter wikiPageExternalLink cc_filter_savgolay.html.
- Savitzky–Golay_filter wikiPageID "1988157".
- Savitzky–Golay_filter wikiPageLength "43447".
- Savitzky–Golay_filter wikiPageOutDegree "71".
- Savitzky–Golay_filter wikiPageRevisionID "682390346".
- Savitzky–Golay_filter wikiPageWikiLink Abraham_Savitzky.
- Savitzky–Golay_filter wikiPageWikiLink Absorption_band.
- Savitzky–Golay_filter wikiPageWikiLink Analytical_Chemistry_(journal).
- Savitzky–Golay_filter wikiPageWikiLink Analytical_chemistry.
- Savitzky–Golay_filter wikiPageWikiLink Analytical_solution.
- Savitzky–Golay_filter wikiPageWikiLink Category:Filter_theory.
- Savitzky–Golay_filter wikiPageWikiLink Category:Regression_analysis.
- Savitzky–Golay_filter wikiPageWikiLink Category:Signal_processing.
- Savitzky–Golay_filter wikiPageWikiLink Cauchy_distribution.
- Savitzky–Golay_filter wikiPageWikiLink Chemical_analysis.
- Savitzky–Golay_filter wikiPageWikiLink Closed-form_expression.
- Savitzky–Golay_filter wikiPageWikiLink Codomain.
- Savitzky–Golay_filter wikiPageWikiLink Convolution.
- Savitzky–Golay_filter wikiPageWikiLink Correlation_and_dependence.
- Savitzky–Golay_filter wikiPageWikiLink Covariance_matrix.
- Savitzky–Golay_filter wikiPageWikiLink Cramers_rule.
- Savitzky–Golay_filter wikiPageWikiLink Degree_(angle).
- Savitzky–Golay_filter wikiPageWikiLink Diagonal_matrix.
- Savitzky–Golay_filter wikiPageWikiLink Digital_data.
- Savitzky–Golay_filter wikiPageWikiLink Digital_filter.
- Savitzky–Golay_filter wikiPageWikiLink Discrete_Chebyshev_polynomials.
- Savitzky–Golay_filter wikiPageWikiLink Discrete_Fourier_transform.
- Savitzky–Golay_filter wikiPageWikiLink Equivalence_point.
- Savitzky–Golay_filter wikiPageWikiLink Error_propagation.
- Savitzky–Golay_filter wikiPageWikiLink Faulhabers_formula.
- Savitzky–Golay_filter wikiPageWikiLink Fourier_transform.
- Savitzky–Golay_filter wikiPageWikiLink Full_width_at_half_maximum.
- Savitzky–Golay_filter wikiPageWikiLink Function_(mathematics).
- Savitzky–Golay_filter wikiPageWikiLink Gram_polynomial.
- Savitzky–Golay_filter wikiPageWikiLink Identity_matrix.
- Savitzky–Golay_filter wikiPageWikiLink Inflection_point.
- Savitzky–Golay_filter wikiPageWikiLink Interpolation.
- Savitzky–Golay_filter wikiPageWikiLink Jacobian_matrix.
- Savitzky–Golay_filter wikiPageWikiLink Jacobian_matrix_and_determinant.
- Savitzky–Golay_filter wikiPageWikiLink Kernel_smoother.
- Savitzky–Golay_filter wikiPageWikiLink Linear_least_squares_(mathematics).
- Savitzky–Golay_filter wikiPageWikiLink Local_regression.
- Savitzky–Golay_filter wikiPageWikiLink Loss_function.
- Savitzky–Golay_filter wikiPageWikiLink Low-pass_filter.
- Savitzky–Golay_filter wikiPageWikiLink MATLAB.
- Savitzky–Golay_filter wikiPageWikiLink Malonic_acid.
- Savitzky–Golay_filter wikiPageWikiLink Marcel_J._E._Golay.
- Savitzky–Golay_filter wikiPageWikiLink Matlab.
- Savitzky–Golay_filter wikiPageWikiLink Maxima_and_minima.
- Savitzky–Golay_filter wikiPageWikiLink Moving_average.
- Savitzky–Golay_filter wikiPageWikiLink Normal_equations.
- Savitzky–Golay_filter wikiPageWikiLink Numerical_differentiation.
- Savitzky–Golay_filter wikiPageWikiLink Objective_function.
- Savitzky–Golay_filter wikiPageWikiLink Orthogonal_polynomial.
- Savitzky–Golay_filter wikiPageWikiLink Orthogonal_polynomials.
- Savitzky–Golay_filter wikiPageWikiLink Pascal_(programming_language).
- Savitzky–Golay_filter wikiPageWikiLink Polynomial.
- Savitzky–Golay_filter wikiPageWikiLink Propagation_of_uncertainty.
- Savitzky–Golay_filter wikiPageWikiLink Real-valued_function.
- Savitzky–Golay_filter wikiPageWikiLink Recursion.
- Savitzky–Golay_filter wikiPageWikiLink Signal-to-noise_ratio.
- Savitzky–Golay_filter wikiPageWikiLink Smoothing.
- Savitzky–Golay_filter wikiPageWikiLink Smoothing_spline.
- Savitzky–Golay_filter wikiPageWikiLink Spreadsheet.
- Savitzky–Golay_filter wikiPageWikiLink Standard_deviation.
- Savitzky–Golay_filter wikiPageWikiLink Statistics.
- Savitzky–Golay_filter wikiPageWikiLink Stencil_(numerical_analysis).
- Savitzky–Golay_filter wikiPageWikiLink Titration_curve.
- Savitzky–Golay_filter wikiPageWikiLink Variance.
- Savitzky–Golay_filter wikiPageWikiLink Variance-covariance_matrix.
- Savitzky–Golay_filter wikiPageWikiLink File:FT_9_point_cubic_convolution_function.png.
- Savitzky–Golay_filter wikiPageWikiLink File:Lissage_sg3_anim.gif.
- Savitzky–Golay_filter wikiPageWikiLink File:SG_noise_reduction.png.
- Savitzky–Golay_filter wikiPageWikiLinkText "Savitzky–Golay filter".
- Savitzky–Golay_filter wikiPageWikiLinkText "Savitzky–Golay smoothing filter".
- Savitzky–Golay_filter align "center".
- Savitzky–Golay_filter caption "4".
- Savitzky–Golay_filter caption "Lorentzian on exponential baseline and 2nd. derivative".
- Savitzky–Golay_filter caption "Sum of two Lorentzians and 2nd. derivative".
- Savitzky–Golay_filter caption "Synthetic Lorentzian + noise and 1st. derivative".
- Savitzky–Golay_filter caption "Titration curve for malonic acid and 2nd. derivative . The part in the light blue box is magnified 10 times".
- Savitzky–Golay_filter hasPhotoCollection Savitzky–Golay_filter.
- Savitzky–Golay_filter image "4".
- Savitzky–Golay_filter image "Baseline correction.png".
- Savitzky–Golay_filter image "Lorentzian and derivative.gif".
- Savitzky–Golay_filter image "Malonic titration.png".
- Savitzky–Golay_filter image "Resolution enhancement.png".
- Savitzky–Golay_filter width "250".
- Savitzky–Golay_filter wikiPageUsesTemplate Template:Cite_book.
- Savitzky–Golay_filter wikiPageUsesTemplate Template:Main.
- Savitzky–Golay_filter wikiPageUsesTemplate Template:Multiple_image.
- Savitzky–Golay_filter wikiPageUsesTemplate Template:Reflist.
- Savitzky–Golay_filter subject Category:Filter_theory.
- Savitzky–Golay_filter subject Category:Regression_analysis.
- Savitzky–Golay_filter subject Category:Signal_processing.
- Savitzky–Golay_filter comment "A Savitzky–Golay filter is a digital filter that can be applied to a set of digital data points for the purpose of smoothing the data, that is, to increase the signal-to-noise ratio without greatly distorting the signal. This is achieved, in a process known as convolution, by fitting successive sub-sets of adjacent data points with a low-degree polynomial by the method of linear least squares .".
- Savitzky–Golay_filter label "Savitzky–Golay filter".
- Savitzky–Golay_filter sameAs Savitzky-Golay-Filter.