Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Proper_morphism> ?p ?o }
- Proper_morphism abstract "In algebraic geometry, a proper morphism between schemes is a scheme-theoretic analogue of a proper map between complex-analytic varieties.A basic example is a complete variety (e.g., projective variety) in the following sense: a k-variety X is complete in the classical definition if it is universally closed. A proper morphism is a generalization of this to schemes.A closed immersion is proper. A morphism is finite if and only if it is proper and quasi-finite.".
- Proper_morphism wikiPageExternalLink feuilleter?id=PMIHES_1966__28_.
- Proper_morphism wikiPageExternalLink PMIHES_1961__8__5_0.pdf.
- Proper_morphism wikiPageExternalLink feuilleter?id=PMIHES_1961__8_.
- Proper_morphism wikiPageID "603782".
- Proper_morphism wikiPageLength "11499".
- Proper_morphism wikiPageOutDegree "69".
- Proper_morphism wikiPageRevisionID "646850331".
- Proper_morphism wikiPageWikiLink Adic_morphism.
- Proper_morphism wikiPageWikiLink Affine_line.
- Proper_morphism wikiPageWikiLink Affine_space_(algebraic_geometry).
- Proper_morphism wikiPageWikiLink Affine_variety.
- Proper_morphism wikiPageWikiLink Algebraic_Geometry_(book).
- Proper_morphism wikiPageWikiLink Algebraic_geometry.
- Proper_morphism wikiPageWikiLink Algebraic_geometry_and_analytic_geometry.
- Proper_morphism wikiPageWikiLink Algebraic_variety.
- Proper_morphism wikiPageWikiLink Annulus_(mathematics).
- Proper_morphism wikiPageWikiLink Category:Morphisms_of_schemes.
- Proper_morphism wikiPageWikiLink Chows_lemma.
- Proper_morphism wikiPageWikiLink Claude_Chevalley.
- Proper_morphism wikiPageWikiLink Closed_immersion.
- Proper_morphism wikiPageWikiLink Closed_map.
- Proper_morphism wikiPageWikiLink Coherent_sheaf.
- Proper_morphism wikiPageWikiLink Complete_variety.
- Proper_morphism wikiPageWikiLink Complex-analytic_variety.
- Proper_morphism wikiPageWikiLink Complex_analytic_space.
- Proper_morphism wikiPageWikiLink Complex_analytic_variety.
- Proper_morphism wikiPageWikiLink Direct_image.
- Proper_morphism wikiPageWikiLink Direct_image_functor.
- Proper_morphism wikiPageWikiLink Discrete_valuation_ring.
- Proper_morphism wikiPageWikiLink Fiber_product.
- Proper_morphism wikiPageWikiLink Field_(mathematics).
- Proper_morphism wikiPageWikiLink Field_of_fractions.
- Proper_morphism wikiPageWikiLink File:Valuative_criterion_of_properness.png.
- Proper_morphism wikiPageWikiLink Finite_morphism.
- Proper_morphism wikiPageWikiLink Finitely_generated_module.
- Proper_morphism wikiPageWikiLink Formal_scheme.
- Proper_morphism wikiPageWikiLink Generic_point.
- Proper_morphism wikiPageWikiLink Glossary_of_algebraic_geometry.
- Proper_morphism wikiPageWikiLink Going_up_and_going_down.
- Proper_morphism wikiPageWikiLink Grothendiecks_relative_point_of_view.
- Proper_morphism wikiPageWikiLink Higher_direct_image.
- Proper_morphism wikiPageWikiLink Holomorphic_function.
- Proper_morphism wikiPageWikiLink Homogeneous_co-ordinates.
- Proper_morphism wikiPageWikiLink Homogeneous_coordinates.
- Proper_morphism wikiPageWikiLink Laurent_polynomial.
- Proper_morphism wikiPageWikiLink Least_common_denominator.
- Proper_morphism wikiPageWikiLink Local_property_of_a_scheme_morphism.
- Proper_morphism wikiPageWikiLink Local_ring.
- Proper_morphism wikiPageWikiLink Locally_noetherian_formal_scheme.
- Proper_morphism wikiPageWikiLink Lowest_common_denominator.
- Proper_morphism wikiPageWikiLink Morphism.
- Proper_morphism wikiPageWikiLink Morphism_of_finite_type.
- Proper_morphism wikiPageWikiLink Nagatas_compactification_theorem.
- Proper_morphism wikiPageWikiLink Noetherian_scheme.
- Proper_morphism wikiPageWikiLink Open_and_closed_maps.
- Proper_morphism wikiPageWikiLink Oxford_University_Press.
- Proper_morphism wikiPageWikiLink Projective_line.
- Proper_morphism wikiPageWikiLink Projective_morphism.
- Proper_morphism wikiPageWikiLink Projective_space.
- Proper_morphism wikiPageWikiLink Projective_variety.
- Proper_morphism wikiPageWikiLink Proper_base_change_theorem.
- Proper_morphism wikiPageWikiLink Proper_map.
- Proper_morphism wikiPageWikiLink Publications_Mathxc3xa9matiques_de_lIHxc3x89S.
- Proper_morphism wikiPageWikiLink Pullback_(category_theory).
- Proper_morphism wikiPageWikiLink Punctured_disc.
- Proper_morphism wikiPageWikiLink Quasi-finite_morphism.
- Proper_morphism wikiPageWikiLink Regular_ring.
- Proper_morphism wikiPageWikiLink Scheme_(mathematics).
- Proper_morphism wikiPageWikiLink Separated_morphism.
- Proper_morphism wikiPageWikiLink Springer-Verlag.
- Proper_morphism wikiPageWikiLink Springer_Science+Business_Media.
- Proper_morphism wikiPageWikiLink Stable_under_base_change.
- Proper_morphism wikiPageWikiLink Stein_factorization.
- Proper_morphism wikiPageWikiLink Topological_space.
- Proper_morphism wikiPageWikiLink Topological_spaces.
- Proper_morphism wikiPageWikiLinkText "Proper morphism".
- Proper_morphism wikiPageWikiLinkText "closedness property".
- Proper_morphism wikiPageWikiLinkText "proper mapping".
- Proper_morphism wikiPageWikiLinkText "proper morphism".
- Proper_morphism wikiPageWikiLinkText "proper".
- Proper_morphism wikiPageWikiLinkText "properness".
- Proper_morphism author "V.I. Danilov".
- Proper_morphism hasPhotoCollection Proper_morphism.
- Proper_morphism id "P/p075450".
- Proper_morphism title "Proper morphism".
- Proper_morphism wikiPageUsesTemplate Template:Citation.
- Proper_morphism wikiPageUsesTemplate Template:Harv.
- Proper_morphism wikiPageUsesTemplate Template:Reflist.
- Proper_morphism wikiPageUsesTemplate Template:Springer.
- Proper_morphism subject Category:Morphisms_of_schemes.
- Proper_morphism hypernym Analogue.
- Proper_morphism type Drug.
- Proper_morphism type Morphism.
- Proper_morphism comment "In algebraic geometry, a proper morphism between schemes is a scheme-theoretic analogue of a proper map between complex-analytic varieties.A basic example is a complete variety (e.g., projective variety) in the following sense: a k-variety X is complete in the classical definition if it is universally closed. A proper morphism is a generalization of this to schemes.A closed immersion is proper. A morphism is finite if and only if it is proper and quasi-finite.".
- Proper_morphism label "Proper morphism".
- Proper_morphism sameAs 고유_사상.
- Proper_morphism sameAs m.02p2g08.
- Proper_morphism sameAs Q7250176.
- Proper_morphism sameAs Q7250176.