Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Neumann–Poincaré_operator> ?p ?o }
Showing triples 1 to 87 of
87
with 100 triples per page.
- Neumann–Poincaré_operator abstract "In mathematics, the Neumann–Poincaré operator or Poincaré–Neumann operator, named after Carl Neumann and Henri Poincaré, is a non-self-adjoint compact operator introduced by Poincaré to solve boundary value problems for the Laplacian on bounded domains in Euclidean space. Within the language of potential theory it reduces the partial differential equation to an integral equation on the boundary to which the theory of Fredholm operators can be applied. The theory is particularly simple in two dimensions—the case treated in detail in this article—where it is related to complex function theory, the conjugate Beurling transform or complex Hilbert transform and the Fredholm eigenvalues of bounded planar domains.".
- Neumann–Poincaré_operator wikiPageID "36728510".
- Neumann–Poincaré_operator wikiPageLength "59036".
- Neumann–Poincaré_operator wikiPageOutDegree "56".
- Neumann–Poincaré_operator wikiPageRevisionID "649764223".
- Neumann–Poincaré_operator wikiPageWikiLink Bergman_space.
- Neumann–Poincaré_operator wikiPageWikiLink Beurling_transform.
- Neumann–Poincaré_operator wikiPageWikiLink Boundary_value_problem.
- Neumann–Poincaré_operator wikiPageWikiLink Carl_Neumann.
- Neumann–Poincaré_operator wikiPageWikiLink Category:Complex_analysis.
- Neumann–Poincaré_operator wikiPageWikiLink Category:Operator_theory.
- Neumann–Poincaré_operator wikiPageWikiLink Category:Partial_differential_equations.
- Neumann–Poincaré_operator wikiPageWikiLink Category:Potential_theory.
- Neumann–Poincaré_operator wikiPageWikiLink Cauchy-Riemann_equations.
- Neumann–Poincaré_operator wikiPageWikiLink Cauchys_integral_theorem.
- Neumann–Poincaré_operator wikiPageWikiLink Cauchy–Riemann_equations.
- Neumann–Poincaré_operator wikiPageWikiLink Cauchy–Schwarz_inequality.
- Neumann–Poincaré_operator wikiPageWikiLink Compact_operator.
- Neumann–Poincaré_operator wikiPageWikiLink Complex_analysis.
- Neumann–Poincaré_operator wikiPageWikiLink Complex_function_theory.
- Neumann–Poincaré_operator wikiPageWikiLink Compositio_Mathematica.
- Neumann–Poincaré_operator wikiPageWikiLink Contraction_(operator_theory).
- Neumann–Poincaré_operator wikiPageWikiLink Curvature.
- Neumann–Poincaré_operator wikiPageWikiLink Double_layer_potential.
- Neumann–Poincaré_operator wikiPageWikiLink Eigenvalue.
- Neumann–Poincaré_operator wikiPageWikiLink Eigenvalues_and_eigenvectors.
- Neumann–Poincaré_operator wikiPageWikiLink Fredholm_determinant.
- Neumann–Poincaré_operator wikiPageWikiLink Fredholm_operator.
- Neumann–Poincaré_operator wikiPageWikiLink Fundamental_solution.
- Neumann–Poincaré_operator wikiPageWikiLink Fundamental_theorem_of_calculus.
- Neumann–Poincaré_operator wikiPageWikiLink Geometric_function_theory.
- Neumann–Poincaré_operator wikiPageWikiLink Gradient.
- Neumann–Poincaré_operator wikiPageWikiLink Greens_identities.
- Neumann–Poincaré_operator wikiPageWikiLink Greens_theorem.
- Neumann–Poincaré_operator wikiPageWikiLink Grunsky_matrix.
- Neumann–Poincaré_operator wikiPageWikiLink Harmonic_conjugate.
- Neumann–Poincaré_operator wikiPageWikiLink Henri_Poincaré.
- Neumann–Poincaré_operator wikiPageWikiLink Hilbert_transform.
- Neumann–Poincaré_operator wikiPageWikiLink Hilbert–Schmidt_operator.
- Neumann–Poincaré_operator wikiPageWikiLink Idempotence.
- Neumann–Poincaré_operator wikiPageWikiLink Idempotent.
- Neumann–Poincaré_operator wikiPageWikiLink Integral_equation.
- Neumann–Poincaré_operator wikiPageWikiLink Jean_Frédéric_Frenet.
- Neumann–Poincaré_operator wikiPageWikiLink Mathematics.
- Neumann–Poincaré_operator wikiPageWikiLink Maximum_principle.
- Neumann–Poincaré_operator wikiPageWikiLink Minimax.
- Neumann–Poincaré_operator wikiPageWikiLink Minimax_principle.
- Neumann–Poincaré_operator wikiPageWikiLink Newtonian_potential.
- Neumann–Poincaré_operator wikiPageWikiLink Partial_differential_equation.
- Neumann–Poincaré_operator wikiPageWikiLink Poisson_integral.
- Neumann–Poincaré_operator wikiPageWikiLink Poisson_kernel.
- Neumann–Poincaré_operator wikiPageWikiLink Potential_theory.
- Neumann–Poincaré_operator wikiPageWikiLink Pseudo-differential_operator.
- Neumann–Poincaré_operator wikiPageWikiLink Pseudodifferential_operator.
- Neumann–Poincaré_operator wikiPageWikiLink Pythagorean_theorem.
- Neumann–Poincaré_operator wikiPageWikiLink Single_layer_potential.
- Neumann–Poincaré_operator wikiPageWikiLink Singular_integral_operators_of_convolution_type.
- Neumann–Poincaré_operator wikiPageWikiLink Singular_integral_operators_on_closed_curves.
- Neumann–Poincaré_operator wikiPageWikiLink Symmetrizable_compact_operator.
- Neumann–Poincaré_operator wikiPageWikiLink Unit_disk.
- Neumann–Poincaré_operator wikiPageWikiLink Variational_principle.
- Neumann–Poincaré_operator wikiPageWikiLinkText "Neumann–Poincaré operator".
- Neumann–Poincaré_operator wikiPageWikiLinkText "Neumann–Poincaré operator#Fredholm eigenvalues".
- Neumann–Poincaré_operator wikiPageWikiLinkText "classical potential theory".
- Neumann–Poincaré_operator hasPhotoCollection Neumann–Poincaré_operator.
- Neumann–Poincaré_operator wikiPageUsesTemplate Template:Citation.
- Neumann–Poincaré_operator wikiPageUsesTemplate Template:Harvtxt.
- Neumann–Poincaré_operator wikiPageUsesTemplate Template:Overline.
- Neumann–Poincaré_operator wikiPageUsesTemplate Template:Pi.
- Neumann–Poincaré_operator wikiPageUsesTemplate Template:Reflist.
- Neumann–Poincaré_operator wikiPageUsesTemplate Template:See_also.
- Neumann–Poincaré_operator subject Category:Complex_analysis.
- Neumann–Poincaré_operator subject Category:Operator_theory.
- Neumann–Poincaré_operator subject Category:Partial_differential_equations.
- Neumann–Poincaré_operator subject Category:Potential_theory.
- Neumann–Poincaré_operator type Thing.
- Neumann–Poincaré_operator comment "In mathematics, the Neumann–Poincaré operator or Poincaré–Neumann operator, named after Carl Neumann and Henri Poincaré, is a non-self-adjoint compact operator introduced by Poincaré to solve boundary value problems for the Laplacian on bounded domains in Euclidean space. Within the language of potential theory it reduces the partial differential equation to an integral equation on the boundary to which the theory of Fredholm operators can be applied.".
- Neumann–Poincaré_operator label "Neumann–Poincaré operator".
- Neumann–Poincaré_operator seeAlso Dirichlet_boundary_condition.
- Neumann–Poincaré_operator seeAlso Singular_integral_operators_of_convolution_type.
- Neumann–Poincaré_operator seeAlso Singular_integral_operators_on_closed_curves.
- Neumann–Poincaré_operator seeAlso Symmetrizable_compact_operator.
- Neumann–Poincaré_operator sameAs m.0l8q7l4.
- Neumann–Poincaré_operator sameAs Q7001957.
- Neumann–Poincaré_operator sameAs Q7001957.
- Neumann–Poincaré_operator wasDerivedFrom Neumann–Poincaré_operator?oldid=649764223.
- Neumann–Poincaré_operator isPrimaryTopicOf Neumann–Poincaré_operator.