Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Lieb_conjecture> ?p ?o }
Showing triples 1 to 28 of
28
with 100 triples per page.
- Lieb_conjecture abstract "In quantum information theory, the Lieb conjecture is a theorem concerning the Wehrl entropy of quantum systems for which the classical phase space is a sphere. It states that no state of such a system has a lower Wehrl entropy than the SU(2) coherent states.The analogous property for quantum systems for which the classical phase space is a plane was conjectured by A. Wehrl in 1978 and proven soon afterwards by Elliott H. Lieb, who at the same time extended it to the SU(2) case. The conjecture was only proven in 2012, by Lieb and Jan Philip Solovej.".
- Lieb_conjecture wikiPageExternalLink lieb.
- Lieb_conjecture wikiPageID "45691906".
- Lieb_conjecture wikiPageLength "1485".
- Lieb_conjecture wikiPageOutDegree "8".
- Lieb_conjecture wikiPageRevisionID "661458400".
- Lieb_conjecture wikiPageWikiLink Category:Conjectures_which_were_proven.
- Lieb_conjecture wikiPageWikiLink Category:Quantum_mechanical_entropy.
- Lieb_conjecture wikiPageWikiLink Coherent_states_in_mathematical_physics.
- Lieb_conjecture wikiPageWikiLink Elliott_H._Lieb.
- Lieb_conjecture wikiPageWikiLink Jan_Philip_Solovej.
- Lieb_conjecture wikiPageWikiLink Phase_space.
- Lieb_conjecture wikiPageWikiLink Quantum_information.
- Lieb_conjecture wikiPageWikiLink Wehrl_entropy.
- Lieb_conjecture hasPhotoCollection Lieb_conjecture.
- Lieb_conjecture wikiPageUsesTemplate Template:Orphan.
- Lieb_conjecture wikiPageUsesTemplate Template:Quantum-stub.
- Lieb_conjecture wikiPageUsesTemplate Template:Reflist.
- Lieb_conjecture subject Category:Conjectures_which_were_proven.
- Lieb_conjecture subject Category:Quantum_mechanical_entropy.
- Lieb_conjecture hypernym Theorem.
- Lieb_conjecture comment "In quantum information theory, the Lieb conjecture is a theorem concerning the Wehrl entropy of quantum systems for which the classical phase space is a sphere. It states that no state of such a system has a lower Wehrl entropy than the SU(2) coherent states.The analogous property for quantum systems for which the classical phase space is a plane was conjectured by A. Wehrl in 1978 and proven soon afterwards by Elliott H. Lieb, who at the same time extended it to the SU(2) case.".
- Lieb_conjecture label "Lieb conjecture".
- Lieb_conjecture sameAs m.0130h1nf.
- Lieb_conjecture sameAs Q20708073.
- Lieb_conjecture sameAs Q20708073.
- Lieb_conjecture wasDerivedFrom Lieb_conjecture?oldid=661458400.
- Lieb_conjecture isPrimaryTopicOf Lieb_conjecture.