Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Jacobi_set> ?p ?o }
Showing triples 1 to 24 of
24
with 100 triples per page.
- Jacobi_set abstract "In Morse theory, a mathematical discipline, Jacobi sets provide a method of studying the relationship between two or more Morse functions.For two Morse functions, the Jacobi set is defined as the set of critical points of the restriction of one function to the level sets of the other function.The Jacobi set can also be defined as the set of points where the gradients of the two functions are parallel. If both the functions are generic, the Jacobi set is a smoothly embedded 1-manifold.".
- Jacobi_set wikiPageID "32768223".
- Jacobi_set wikiPageLength "2029".
- Jacobi_set wikiPageOutDegree "4".
- Jacobi_set wikiPageRevisionID "644811331".
- Jacobi_set wikiPageWikiLink Category:Morse_theory.
- Jacobi_set wikiPageWikiLink Gradient.
- Jacobi_set wikiPageWikiLink Gradients.
- Jacobi_set wikiPageWikiLink Morse_function.
- Jacobi_set wikiPageWikiLink Morse_theory.
- Jacobi_set wikiPageWikiLinkText "Jacobi set".
- Jacobi_set hasPhotoCollection Jacobi_set.
- Jacobi_set wikiPageUsesTemplate Template:Multiple_issues.
- Jacobi_set wikiPageUsesTemplate Template:Reflist.
- Jacobi_set subject Category:Morse_theory.
- Jacobi_set type Article.
- Jacobi_set type Article.
- Jacobi_set comment "In Morse theory, a mathematical discipline, Jacobi sets provide a method of studying the relationship between two or more Morse functions.For two Morse functions, the Jacobi set is defined as the set of critical points of the restriction of one function to the level sets of the other function.The Jacobi set can also be defined as the set of points where the gradients of the two functions are parallel. If both the functions are generic, the Jacobi set is a smoothly embedded 1-manifold.".
- Jacobi_set label "Jacobi set".
- Jacobi_set sameAs m.0h3sz32.
- Jacobi_set sameAs Q6119646.
- Jacobi_set sameAs Q6119646.
- Jacobi_set wasDerivedFrom Jacobi_set?oldid=644811331.
- Jacobi_set isPrimaryTopicOf Jacobi_set.