Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Isotopy_of_an_algebra> ?p ?o }
Showing triples 1 to 37 of
37
with 100 triples per page.
- Isotopy_of_an_algebra abstract "In mathematics, an isotopy from a possibly non-associative algebra A to another is a triple of bijective linear maps a, b, c such that if xy=z then a(x)b(y)=c(z). This is similar to the definition of an isotopy of loops, except that it must also preserve the linear structure of the algebra. For a=b=c this is the same as an isomorphism. The autotopy group of an algebra is the group of all isotopies to itself (sometimes called autotopies), which contains the group of automorphisms as a subgroup.Isotopy of algebras was introduced by Albert (1942), who was inspired by work of Steenrod.Some authors use a slightly different definition that an isotopy is a triple of bijective linear maps a, b, c such that if xyz=1 then a(x)b(y)c(z)=1. For alternative division algebras such as the octonions the two definitions of isotopy are equivalent, but in general they are not.".
- Isotopy_of_an_algebra wikiPageExternalLink McCrimmon.
- Isotopy_of_an_algebra wikiPageExternalLink books?isbn=0387954473.
- Isotopy_of_an_algebra wikiPageID "42900472".
- Isotopy_of_an_algebra wikiPageLength "3961".
- Isotopy_of_an_algebra wikiPageOutDegree "12".
- Isotopy_of_an_algebra wikiPageRevisionID "611528051".
- Isotopy_of_an_algebra wikiPageWikiLink Alternative_algebra.
- Isotopy_of_an_algebra wikiPageWikiLink Bijection,_injection_and_surjection.
- Isotopy_of_an_algebra wikiPageWikiLink Category:Non-associative_algebras.
- Isotopy_of_an_algebra wikiPageWikiLink Division_algebra.
- Isotopy_of_an_algebra wikiPageWikiLink G2_(mathematics).
- Isotopy_of_an_algebra wikiPageWikiLink Isotopy_of_loops.
- Isotopy_of_an_algebra wikiPageWikiLink Linear_map.
- Isotopy_of_an_algebra wikiPageWikiLink Mutation_(algebra).
- Isotopy_of_an_algebra wikiPageWikiLink Non-associative_algebra.
- Isotopy_of_an_algebra wikiPageWikiLink Octonion.
- Isotopy_of_an_algebra wikiPageWikiLink Spin_group.
- Isotopy_of_an_algebra wikiPageWikiLink Springer-Verlag.
- Isotopy_of_an_algebra wikiPageWikiLink Springer_Science+Business_Media.
- Isotopy_of_an_algebra wikiPageWikiLinkText "'''isotope'''".
- Isotopy_of_an_algebra wikiPageWikiLinkText "Isotopy of an algebra".
- Isotopy_of_an_algebra wikiPageWikiLinkText "isotopy for algebras".
- Isotopy_of_an_algebra wikiPageWikiLinkText "isotopy of an algebra".
- Isotopy_of_an_algebra hasPhotoCollection Isotopy_of_an_algebra.
- Isotopy_of_an_algebra wikiPageUsesTemplate Template:Citation.
- Isotopy_of_an_algebra wikiPageUsesTemplate Template:Eom.
- Isotopy_of_an_algebra wikiPageUsesTemplate Template:Harvs.
- Isotopy_of_an_algebra wikiPageUsesTemplate Template:Overline.
- Isotopy_of_an_algebra subject Category:Non-associative_algebras.
- Isotopy_of_an_algebra comment "In mathematics, an isotopy from a possibly non-associative algebra A to another is a triple of bijective linear maps a, b, c such that if xy=z then a(x)b(y)=c(z). This is similar to the definition of an isotopy of loops, except that it must also preserve the linear structure of the algebra. For a=b=c this is the same as an isomorphism.".
- Isotopy_of_an_algebra label "Isotopy of an algebra".
- Isotopy_of_an_algebra sameAs m.010qgs_t.
- Isotopy_of_an_algebra sameAs Q17098216.
- Isotopy_of_an_algebra sameAs Q17098216.
- Isotopy_of_an_algebra wasDerivedFrom Isotopy_of_an_algebra?oldid=611528051.
- Isotopy_of_an_algebra isPrimaryTopicOf Isotopy_of_an_algebra.