Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Immerman–Szelepcsényi_theorem> ?p ?o }
Showing triples 1 to 43 of
43
with 100 triples per page.
- Immerman–Szelepcsényi_theorem abstract "In computational complexity theory, the Immerman–Szelepcsényi theorem was proven independently by Neil Immerman and Róbert Szelepcsényi in 1987, for which they shared the 1995 Gödel Prize. In its general form the theorem states that NSPACE(s(n)) = co-NSPACE(s(n)) for any function s(n) ≥ log n. The result is equivalently stated as NL = co-NL; although this is the special case when s(n) = log n, it implies the general theorem by a standard padding argument. The result solved the second LBA problem.In other words, if a nondeterministic machine can solve a problem, it can solve its complement problem (with the yes and no answers reversed) in the same asymptotic amount of space. No similar result is known for the time complexity classes, and indeed it is conjectured that NP is not equal to co-NP.".
- Immerman–Szelepcsényi_theorem wikiPageExternalLink 200380198.
- Immerman–Szelepcsényi_theorem wikiPageExternalLink space.pdf.
- Immerman–Szelepcsényi_theorem wikiPageID "2827371".
- Immerman–Szelepcsényi_theorem wikiPageLength "3070".
- Immerman–Szelepcsényi_theorem wikiPageOutDegree "19".
- Immerman–Szelepcsényi_theorem wikiPageRevisionID "654014693".
- Immerman–Szelepcsényi_theorem wikiPageWikiLink Alternating_Turing_machine.
- Immerman–Szelepcsényi_theorem wikiPageWikiLink Category:Articles_containing_proofs.
- Immerman–Szelepcsényi_theorem wikiPageWikiLink Category:Mathematical_theorems_in_theoretical_computer_science.
- Immerman–Szelepcsényi_theorem wikiPageWikiLink Category:Structural_complexity_theory.
- Immerman–Szelepcsényi_theorem wikiPageWikiLink Co-NP.
- Immerman–Szelepcsényi_theorem wikiPageWikiLink Complement_(complexity).
- Immerman–Szelepcsényi_theorem wikiPageWikiLink Computational_complexity_theory.
- Immerman–Szelepcsényi_theorem wikiPageWikiLink Descriptive_complexity.
- Immerman–Szelepcsényi_theorem wikiPageWikiLink Descriptive_complexity_theory.
- Immerman–Szelepcsényi_theorem wikiPageWikiLink FO_(complexity).
- Immerman–Szelepcsényi_theorem wikiPageWikiLink Gödel_Prize.
- Immerman–Szelepcsényi_theorem wikiPageWikiLink Linear_bounded_automaton.
- Immerman–Szelepcsényi_theorem wikiPageWikiLink NL_(complexity).
- Immerman–Szelepcsényi_theorem wikiPageWikiLink NP_(complexity).
- Immerman–Szelepcsényi_theorem wikiPageWikiLink NSPACE.
- Immerman–Szelepcsényi_theorem wikiPageWikiLink Neil_Immerman.
- Immerman–Szelepcsényi_theorem wikiPageWikiLink Padding_argument.
- Immerman–Szelepcsényi_theorem wikiPageWikiLink Róbert_Szelepcsényi.
- Immerman–Szelepcsényi_theorem wikiPageWikiLink Savitchs_theorem.
- Immerman–Szelepcsényi_theorem wikiPageWikiLinkText "Immerman–Szelepcsényi theorem".
- Immerman–Szelepcsényi_theorem hasPhotoCollection Immerman–Szelepcsényi_theorem.
- Immerman–Szelepcsényi_theorem wikiPageUsesTemplate Template:Reflist.
- Immerman–Szelepcsényi_theorem subject Category:Articles_containing_proofs.
- Immerman–Szelepcsényi_theorem subject Category:Mathematical_theorems_in_theoretical_computer_science.
- Immerman–Szelepcsényi_theorem subject Category:Structural_complexity_theory.
- Immerman–Szelepcsényi_theorem comment "In computational complexity theory, the Immerman–Szelepcsényi theorem was proven independently by Neil Immerman and Róbert Szelepcsényi in 1987, for which they shared the 1995 Gödel Prize. In its general form the theorem states that NSPACE(s(n)) = co-NSPACE(s(n)) for any function s(n) ≥ log n. The result is equivalently stated as NL = co-NL; although this is the special case when s(n) = log n, it implies the general theorem by a standard padding argument.".
- Immerman–Szelepcsényi_theorem label "Immerman–Szelepcsényi theorem".
- Immerman–Szelepcsényi_theorem sameAs Satz_von_Immerman_und_Szelepcsényi.
- Immerman–Szelepcsényi_theorem sameAs Thxc3xa9orxc3xa8me_dImmerman-Szelepcsxc3xa9nyi.
- Immerman–Szelepcsényi_theorem sameAs משפט_אימרמן.
- Immerman–Szelepcsényi_theorem sameAs Teorema_de_Immerman–Szelepcsényi.
- Immerman–Szelepcsényi_theorem sameAs m.0857kx.
- Immerman–Szelepcsényi_theorem sameAs Q744440.
- Immerman–Szelepcsényi_theorem sameAs Q744440.
- Immerman–Szelepcsényi_theorem wasDerivedFrom Immerman–Szelepcsényi_theorem?oldid=654014693.
- Immerman–Szelepcsényi_theorem isPrimaryTopicOf Immerman–Szelepcsényi_theorem.