Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/GapP> ?p ?o }
Showing triples 1 to 28 of
28
with 100 triples per page.
- GapP abstract "GapP is a counting complexity class, consisting of all of the functions f such that there exists a polynomial-time non-deterministic Turing machine M where, for any input x, f(x) is equal to the number of accepting paths of M minus the number of rejecting paths of M. GapP is exactly the closure of #P under subtraction. It also has all the other nice closure properties of #P, such as addition, multiplication, and binomial coefficients.The counting class AWPP is defined in terms of GapP functions.".
- GapP wikiPageExternalLink summary?doi=10.1.1.42.5938.
- GapP wikiPageID "4788155".
- GapP wikiPageLength "921".
- GapP wikiPageOutDegree "5".
- GapP wikiPageRevisionID "386335524".
- GapP wikiPageWikiLink AWPP_(complexity).
- GapP wikiPageWikiLink Almost_Wide_Probabilistic_Polynomial-Time.
- GapP wikiPageWikiLink Category:Complexity_classes.
- GapP wikiPageWikiLink Counting_complexity_class.
- GapP wikiPageWikiLink Counting_problem_(complexity).
- GapP wikiPageWikiLink Non-deterministic_Turing_machine.
- GapP wikiPageWikiLink Sharp-P.
- GapP wikiPageWikiLinkText "GapP".
- GapP hasPhotoCollection GapP.
- GapP wikiPageUsesTemplate Template:CZoo.
- GapP wikiPageUsesTemplate Template:Comp-sci-theory-stub.
- GapP wikiPageUsesTemplate Template:ComplexityClasses.
- GapP subject Category:Complexity_classes.
- GapP hypernym Class.
- GapP type Class.
- GapP comment "GapP is a counting complexity class, consisting of all of the functions f such that there exists a polynomial-time non-deterministic Turing machine M where, for any input x, f(x) is equal to the number of accepting paths of M minus the number of rejecting paths of M. GapP is exactly the closure of #P under subtraction.".
- GapP label "GapP".
- GapP sameAs m.0cncck.
- GapP sameAs Q5521731.
- GapP sameAs Q5521731.
- GapP wasDerivedFrom GapP?oldid=386335524.
- GapP isPrimaryTopicOf GapP.