Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Fays_trisecant_identity> ?p ?o }
Showing triples 1 to 40 of
40
with 100 triples per page.
- Fays_trisecant_identity abstract "In algebraic geometry, Fay's trisecant identity is an identity between theta functions of Riemann surfaces introduced by Fay (1973, chapter 3, page 34, formula 45). Fay's identity holds for theta functions of Jacobians of curves, but not for theta functions of general abelian varieties.The name "trisecant identity" refers to the geometric interpretation given by Mumford (1984, p.3.219), who used it to show that the Kummer variety of a genus g Riemann surface, given by the image of the map from the Jacobian to projective space of dimension 2g – 1 induced by theta functions of order 2, has a 4-dimensional space of trisecants.".
- Fays_trisecant_identity wikiPageID "34672901".
- Fays_trisecant_identity wikiPageLength "2775".
- Fays_trisecant_identity wikiPageOutDegree "12".
- Fays_trisecant_identity wikiPageRevisionID "656376538".
- Fays_trisecant_identity wikiPageWikiLink Abelian_variety.
- Fays_trisecant_identity wikiPageWikiLink Academic_Press.
- Fays_trisecant_identity wikiPageWikiLink Algebraic_geometry.
- Fays_trisecant_identity wikiPageWikiLink Category:Abelian_varieties.
- Fays_trisecant_identity wikiPageWikiLink Category:Mathematical_identities.
- Fays_trisecant_identity wikiPageWikiLink Category:Riemann_surfaces.
- Fays_trisecant_identity wikiPageWikiLink Category:Theta_functions.
- Fays_trisecant_identity wikiPageWikiLink Kummer_variety.
- Fays_trisecant_identity wikiPageWikiLink Prime_form.
- Fays_trisecant_identity wikiPageWikiLink Riemann_surface.
- Fays_trisecant_identity wikiPageWikiLink Springer-Verlag.
- Fays_trisecant_identity wikiPageWikiLink Springer_Science+Business_Media.
- Fays_trisecant_identity wikiPageWikiLink Theta_function.
- Fays_trisecant_identity wikiPageWikiLinkText "Fay's trisecant identity".
- Fays_trisecant_identity authorlink "John David Fay".
- Fays_trisecant_identity hasPhotoCollection Fays_trisecant_identity.
- Fays_trisecant_identity last "Fay".
- Fays_trisecant_identity loc "chapter 3, page 34, formula 45".
- Fays_trisecant_identity wikiPageUsesTemplate Template:Citation.
- Fays_trisecant_identity wikiPageUsesTemplate Template:Harvs.
- Fays_trisecant_identity wikiPageUsesTemplate Template:Harvtxt.
- Fays_trisecant_identity year "1973".
- Fays_trisecant_identity subject Category:Abelian_varieties.
- Fays_trisecant_identity subject Category:Mathematical_identities.
- Fays_trisecant_identity subject Category:Riemann_surfaces.
- Fays_trisecant_identity subject Category:Theta_functions.
- Fays_trisecant_identity hypernym Identity.
- Fays_trisecant_identity type Person.
- Fays_trisecant_identity comment "In algebraic geometry, Fay's trisecant identity is an identity between theta functions of Riemann surfaces introduced by Fay (1973, chapter 3, page 34, formula 45).".
- Fays_trisecant_identity label "Fay's trisecant identity".
- Fays_trisecant_identity sameAs m.0j24rnw.
- Fays_trisecant_identity sameAs Q5438875.
- Fays_trisecant_identity sameAs Q5438875.
- Fays_trisecant_identity wasDerivedFrom Fays_trisecant_identityoldid=656376538.
- Fays_trisecant_identity isPrimaryTopicOf Fays_trisecant_identity.