Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Entropy_power_inequality> ?p ?o }
Showing triples 1 to 50 of
50
with 100 triples per page.
- Entropy_power_inequality abstract "In mathematics, the entropy power inequality is a result in information theory that relates to so-called "entropy power" of random variables. It shows that the entropy power of suitably well-behaved random variables is a superadditive function. The entropy power inequality was proved in 1948 by Claude Shannon in his seminal paper "A Mathematical Theory of Communication". Shannon also provided a sufficient condition for equality to hold; Stam (1959) showed that the condition is in fact necessary.".
- Entropy_power_inequality wikiPageID "11840868".
- Entropy_power_inequality wikiPageLength "3068".
- Entropy_power_inequality wikiPageOutDegree "26".
- Entropy_power_inequality wikiPageRevisionID "662972898".
- Entropy_power_inequality wikiPageWikiLink A_Mathematical_Theory_of_Communication.
- Entropy_power_inequality wikiPageWikiLink Bell_System_Technical_Journal.
- Entropy_power_inequality wikiPageWikiLink Bulletin_of_the_American_Mathematical_Society.
- Entropy_power_inequality wikiPageWikiLink Category:Information_theory.
- Entropy_power_inequality wikiPageWikiLink Category:Probabilistic_inequalities.
- Entropy_power_inequality wikiPageWikiLink Category:Statistical_inequalities.
- Entropy_power_inequality wikiPageWikiLink Claude_Shannon.
- Entropy_power_inequality wikiPageWikiLink Covariance_matrix.
- Entropy_power_inequality wikiPageWikiLink Differential_entropy.
- Entropy_power_inequality wikiPageWikiLink Entropy_(information_theory).
- Entropy_power_inequality wikiPageWikiLink Entropy_estimation.
- Entropy_power_inequality wikiPageWikiLink Function_(mathematics).
- Entropy_power_inequality wikiPageWikiLink If_and_only_if.
- Entropy_power_inequality wikiPageWikiLink Independence_(probability_theory).
- Entropy_power_inequality wikiPageWikiLink Independent_random_variables.
- Entropy_power_inequality wikiPageWikiLink Information_entropy.
- Entropy_power_inequality wikiPageWikiLink Information_theory.
- Entropy_power_inequality wikiPageWikiLink Kullback–Leibler_divergence.
- Entropy_power_inequality wikiPageWikiLink Limiting_density_of_discrete_points.
- Entropy_power_inequality wikiPageWikiLink Lp_space.
- Entropy_power_inequality wikiPageWikiLink Mathematics.
- Entropy_power_inequality wikiPageWikiLink Multivariate_normal.
- Entropy_power_inequality wikiPageWikiLink Multivariate_normal_distribution.
- Entropy_power_inequality wikiPageWikiLink Probability_density_function.
- Entropy_power_inequality wikiPageWikiLink Random_variable.
- Entropy_power_inequality wikiPageWikiLink Self-information.
- Entropy_power_inequality wikiPageWikiLink Superadditive.
- Entropy_power_inequality wikiPageWikiLink Superadditivity.
- Entropy_power_inequality wikiPageWikiLink Well-behaved.
- Entropy_power_inequality wikiPageWikiLinkText "Entropy power inequality".
- Entropy_power_inequality hasPhotoCollection Entropy_power_inequality.
- Entropy_power_inequality wikiPageUsesTemplate Template:Cite_journal.
- Entropy_power_inequality subject Category:Information_theory.
- Entropy_power_inequality subject Category:Probabilistic_inequalities.
- Entropy_power_inequality subject Category:Statistical_inequalities.
- Entropy_power_inequality hypernym Result.
- Entropy_power_inequality type Inequality.
- Entropy_power_inequality type Theorem.
- Entropy_power_inequality comment "In mathematics, the entropy power inequality is a result in information theory that relates to so-called "entropy power" of random variables. It shows that the entropy power of suitably well-behaved random variables is a superadditive function. The entropy power inequality was proved in 1948 by Claude Shannon in his seminal paper "A Mathematical Theory of Communication". Shannon also provided a sufficient condition for equality to hold; Stam (1959) showed that the condition is in fact necessary.".
- Entropy_power_inequality label "Entropy power inequality".
- Entropy_power_inequality sameAs m.02rv6v6.
- Entropy_power_inequality sameAs Q5380810.
- Entropy_power_inequality sameAs Q5380810.
- Entropy_power_inequality wasDerivedFrom Entropy_power_inequality?oldid=662972898.
- Entropy_power_inequality isPrimaryTopicOf Entropy_power_inequality.