Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Endoscopic_group> ?p ?o }
Showing triples 1 to 54 of
54
with 100 triples per page.
- Endoscopic_group abstract "In mathematics, endoscopic groups of reductive algebraic groups were introduced by Robert Langlands (1979, 1983) in his work on the stable trace formula.Roughly speaking, an endoscopic group H of G is a quasi-split group whose L-group is the connected component of the centralizer of a semisimple element of the L-group of G.In the stable trace formula, unstable orbital integrals on a group G correspond to stable orbital integrals on its endoscopic groups H. The relation between them is given by the fundamental lemma.".
- Endoscopic_group wikiPageExternalLink books?id=NYxAtwAACAAJ.
- Endoscopic_group wikiPageExternalLink supplement.html.
- Endoscopic_group wikiPageExternalLink arthur-endoscopic-tifr.pdf.
- Endoscopic_group wikiPageExternalLink src2006.
- Endoscopic_group wikiPageExternalLink debuts.
- Endoscopic_group wikiPageExternalLink hida22.pdf.
- Endoscopic_group wikiPageExternalLink labesse.pdf.
- Endoscopic_group wikiPageID "20546343".
- Endoscopic_group wikiPageLength "4026".
- Endoscopic_group wikiPageOutDegree "14".
- Endoscopic_group wikiPageRevisionID "673509583".
- Endoscopic_group wikiPageWikiLink American_Mathematical_Society.
- Endoscopic_group wikiPageWikiLink Arthur–Selberg_trace_formula.
- Endoscopic_group wikiPageWikiLink Canadian_Journal_of_Mathematics.
- Endoscopic_group wikiPageWikiLink Canadian_Mathematical_Bulletin.
- Endoscopic_group wikiPageWikiLink Category:Automorphic_forms.
- Endoscopic_group wikiPageWikiLink Category:Langlands_program.
- Endoscopic_group wikiPageWikiLink Fundamental_lemma_(Langlands_program).
- Endoscopic_group wikiPageWikiLink Langlands_dual.
- Endoscopic_group wikiPageWikiLink Langlands_dual_group.
- Endoscopic_group wikiPageWikiLink Mathematics.
- Endoscopic_group wikiPageWikiLink Mathematische_Annalen.
- Endoscopic_group wikiPageWikiLink Orbital_integral.
- Endoscopic_group wikiPageWikiLink Quasi-split_group.
- Endoscopic_group wikiPageWikiLink Reductive_algebraic_group.
- Endoscopic_group wikiPageWikiLink Reductive_group.
- Endoscopic_group wikiPageWikiLink Stable_trace_formula.
- Endoscopic_group wikiPageWikiLinkText "endoscopic group".
- Endoscopic_group wikiPageWikiLinkText "endoscopy".
- Endoscopic_group wikiPageWikiLinkText "tempered endoscopy".
- Endoscopic_group wikiPageWikiLinkText "twisted endoscopy".
- Endoscopic_group authorlink "Robert Langlands".
- Endoscopic_group first "Robert".
- Endoscopic_group hasPhotoCollection Endoscopic_group.
- Endoscopic_group last "Langlands".
- Endoscopic_group wikiPageUsesTemplate Template:Citation.
- Endoscopic_group wikiPageUsesTemplate Template:Cite_book.
- Endoscopic_group wikiPageUsesTemplate Template:Harvs.
- Endoscopic_group year "1979".
- Endoscopic_group year "1983".
- Endoscopic_group subject Category:Automorphic_forms.
- Endoscopic_group subject Category:Langlands_program.
- Endoscopic_group hypernym Group.
- Endoscopic_group type Band.
- Endoscopic_group type Group.
- Endoscopic_group type Group.
- Endoscopic_group comment "In mathematics, endoscopic groups of reductive algebraic groups were introduced by Robert Langlands (1979, 1983) in his work on the stable trace formula.Roughly speaking, an endoscopic group H of G is a quasi-split group whose L-group is the connected component of the centralizer of a semisimple element of the L-group of G.In the stable trace formula, unstable orbital integrals on a group G correspond to stable orbital integrals on its endoscopic groups H.".
- Endoscopic_group label "Endoscopic group".
- Endoscopic_group sameAs m.0522fms.
- Endoscopic_group sameAs Q5376414.
- Endoscopic_group sameAs Q5376414.
- Endoscopic_group wasDerivedFrom Endoscopic_group?oldid=673509583.
- Endoscopic_group isPrimaryTopicOf Endoscopic_group.