Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Conway_criterion> ?p ?o }
Showing triples 1 to 42 of
42
with 100 triples per page.
- Conway_criterion abstract "In the mathematical theory of tessellations, the Conway criterion, named for the English mathematician John Horton Conway, describes rules for when a prototile will tile the plane; it consists of the following requirements: The tile must be a closed topological disk with six consecutive points A, B, C, D, E, and F on the boundary such that: the boundary part from A to B is congruent by translation to the boundary part from E to D each of the boundary parts BC, CD, EF, and FA is centrosymmetric—that is, each one is congruent to itself when rotated by 180-degrees around its midpoint some of the six points may coincide but at least three of them must be distinct.Any prototile satisfying Conway's criterion admits a periodic tiling of the plane—and does so using only translation and 180-degree rotations. The Conway criterion is a sufficient condition to prove that a prototile tiles the plane but not a necessary one; there are tiles that fail the criterion and still tile the plane.".
- Conway_criterion thumbnail Isohedral_tiling_p6-7.png?width=300.
- Conway_criterion wikiPageExternalLink ch1ind.pdf.
- Conway_criterion wikiPageID "42806211".
- Conway_criterion wikiPageLength "3543".
- Conway_criterion wikiPageOutDegree "15".
- Conway_criterion wikiPageRevisionID "675172334".
- Conway_criterion wikiPageWikiLink Ball_(mathematics).
- Conway_criterion wikiPageWikiLink Category:Tessellation.
- Conway_criterion wikiPageWikiLink Centrosymmetry.
- Conway_criterion wikiPageWikiLink Euclidean_tilings_of_convex_regular_polygons.
- Conway_criterion wikiPageWikiLink Hexagon.
- Conway_criterion wikiPageWikiLink John_Horton_Conway.
- Conway_criterion wikiPageWikiLink Nonomino.
- Conway_criterion wikiPageWikiLink Parallelogon.
- Conway_criterion wikiPageWikiLink Periodic_tiling.
- Conway_criterion wikiPageWikiLink Polyform.
- Conway_criterion wikiPageWikiLink Polyforms.
- Conway_criterion wikiPageWikiLink Polyomino.
- Conway_criterion wikiPageWikiLink Prototile.
- Conway_criterion wikiPageWikiLink Tessellation.
- Conway_criterion wikiPageWikiLink Tessellations.
- Conway_criterion wikiPageWikiLink Topological_disc.
- Conway_criterion wikiPageWikiLink File:Conway_criterion_false_negative_nonominoes.svg.
- Conway_criterion wikiPageWikiLink File:Conway_criterion_prototile.pdf.
- Conway_criterion wikiPageWikiLink File:Isohedral_tiling_p6-7.png.
- Conway_criterion wikiPageWikiLinkText "Conway criterion".
- Conway_criterion hasPhotoCollection Conway_criterion.
- Conway_criterion wikiPageUsesTemplate Template:Reflist.
- Conway_criterion wikiPageUsesTemplate Template:Tessellation.
- Conway_criterion subject Category:Tessellation.
- Conway_criterion hypernym Congruent.
- Conway_criterion type Person.
- Conway_criterion comment "In the mathematical theory of tessellations, the Conway criterion, named for the English mathematician John Horton Conway, describes rules for when a prototile will tile the plane; it consists of the following requirements: The tile must be a closed topological disk with six consecutive points A, B, C, D, E, and F on the boundary such that: the boundary part from A to B is congruent by translation to the boundary part from E to D each of the boundary parts BC, CD, EF, and FA is centrosymmetric—that is, each one is congruent to itself when rotated by 180-degrees around its midpoint some of the six points may coincide but at least three of them must be distinct.Any prototile satisfying Conway's criterion admits a periodic tiling of the plane—and does so using only translation and 180-degree rotations. ".
- Conway_criterion label "Conway criterion".
- Conway_criterion sameAs m.010pnz44.
- Conway_criterion sameAs Q17005818.
- Conway_criterion sameAs Q17005818.
- Conway_criterion sameAs 康威準則.
- Conway_criterion wasDerivedFrom Conway_criterion?oldid=675172334.
- Conway_criterion depiction Isohedral_tiling_p6-7.png.
- Conway_criterion isPrimaryTopicOf Conway_criterion.