Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Borel_subgroup> ?p ?o }
Showing triples 1 to 63 of
63
with 100 triples per page.
- Borel_subgroup abstract "In the theory of algebraic groups, a Borel subgroup of an algebraic group G is a maximal Zariski closed and connected solvable algebraic subgroup. For example, in the group GLn (n x n invertible matrices), the subgroup of invertible upper triangular matrices is a Borel subgroup. For groups realized over algebraically closed fields, there is a single conjugacy class of Borel subgroups.Borel subgroups are one of the two key ingredients in understanding the structure of simple (more generally, reductive) algebraic groups, in Jacques Tits' theory of groups with a (B,N) pair. Here the group B is a Borel subgroup and N is the normalizer of a maximal torus contained in B.The notion was introduced by Armand Borel, who played a leading role in the development of the theory of algebraic groups.".
- Borel_subgroup wikiPageID "588356".
- Borel_subgroup wikiPageLength "3443".
- Borel_subgroup wikiPageOutDegree "23".
- Borel_subgroup wikiPageRevisionID "679088006".
- Borel_subgroup wikiPageWikiLink (B,N)_pair.
- Borel_subgroup wikiPageWikiLink (B,_N)_pair.
- Borel_subgroup wikiPageWikiLink Algebraic_group.
- Borel_subgroup wikiPageWikiLink Algebraic_groups.
- Borel_subgroup wikiPageWikiLink Algebraic_subgroup.
- Borel_subgroup wikiPageWikiLink Algebraically_closed_field.
- Borel_subgroup wikiPageWikiLink Armand_Borel.
- Borel_subgroup wikiPageWikiLink Cartan_subalgebra.
- Borel_subgroup wikiPageWikiLink Category:Algebraic_groups.
- Borel_subgroup wikiPageWikiLink Complete_variety.
- Borel_subgroup wikiPageWikiLink Conjugacy_class.
- Borel_subgroup wikiPageWikiLink Dynkin_diagram.
- Borel_subgroup wikiPageWikiLink Hyperbolic_group.
- Borel_subgroup wikiPageWikiLink Jacques_Tits.
- Borel_subgroup wikiPageWikiLink Lie_algebra.
- Borel_subgroup wikiPageWikiLink Maximal_torus.
- Borel_subgroup wikiPageWikiLink Order_theory.
- Borel_subgroup wikiPageWikiLink Parabolic_Lie_algebra.
- Borel_subgroup wikiPageWikiLink Reductive_group.
- Borel_subgroup wikiPageWikiLink Solvable_group.
- Borel_subgroup wikiPageWikiLink Triangular_matrix.
- Borel_subgroup wikiPageWikiLink Upper_triangular_matrix.
- Borel_subgroup wikiPageWikiLink Weight_(representation_theory).
- Borel_subgroup wikiPageWikiLink Weight_space.
- Borel_subgroup wikiPageWikiLink Zariski_topology.
- Borel_subgroup wikiPageWikiLinkText "Borel parts".
- Borel_subgroup wikiPageWikiLinkText "Borel subgroup".
- Borel_subgroup wikiPageWikiLinkText "invertible upper triangular".
- Borel_subgroup wikiPageWikiLinkText "parabolic subgroups".
- Borel_subgroup authorlink "Vladimir L. Popov".
- Borel_subgroup first "V.L.".
- Borel_subgroup first "V.P.".
- Borel_subgroup hasPhotoCollection Borel_subgroup.
- Borel_subgroup id "Borel_subgroup".
- Borel_subgroup id "Parabolic_subgroup".
- Borel_subgroup last "Platonov".
- Borel_subgroup last "Popov".
- Borel_subgroup oldid "14476".
- Borel_subgroup oldid "16195".
- Borel_subgroup title "Borel subgroup".
- Borel_subgroup title "Parabolic subgroup".
- Borel_subgroup wikiPageUsesTemplate Template:Cite_book.
- Borel_subgroup wikiPageUsesTemplate Template:Cite_conference.
- Borel_subgroup wikiPageUsesTemplate Template:Lie_groups.
- Borel_subgroup wikiPageUsesTemplate Template:SpringerEOM.
- Borel_subgroup subject Category:Algebraic_groups.
- Borel_subgroup hypernym Zariski.
- Borel_subgroup type Group.
- Borel_subgroup type Group.
- Borel_subgroup type Variety.
- Borel_subgroup comment "In the theory of algebraic groups, a Borel subgroup of an algebraic group G is a maximal Zariski closed and connected solvable algebraic subgroup. For example, in the group GLn (n x n invertible matrices), the subgroup of invertible upper triangular matrices is a Borel subgroup.".
- Borel_subgroup label "Borel subgroup".
- Borel_subgroup sameAs Parabolische_Untergruppe.
- Borel_subgroup sameAs m.02swng.
- Borel_subgroup sameAs Q4944913.
- Borel_subgroup sameAs Q4944913.
- Borel_subgroup wasDerivedFrom Borel_subgroup?oldid=679088006.
- Borel_subgroup isPrimaryTopicOf Borel_subgroup.