Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Borel–Weil_theorem> ?p ?o }
Showing triples 1 to 52 of
52
with 100 triples per page.
- Borel–Weil_theorem abstract "In mathematics, in the field of representation theory, the Borel–Weil theorem, named after Armand Borel and André Weil, provides a concrete model for irreducible representations of compact Lie groups and complex semisimple Lie groups. These representations are realized in the spaces of global sections of holomorphic line bundles on the flag manifold of the group. Its generalization to higher cohomology spaces is called the Borel–Weil–Bott theorem.".
- Borel–Weil_theorem wikiPageID "1357967".
- Borel–Weil_theorem wikiPageLength "5034".
- Borel–Weil_theorem wikiPageOutDegree "26".
- Borel–Weil_theorem wikiPageRevisionID "682077883".
- Borel–Weil_theorem wikiPageWikiLink André_Weil.
- Borel–Weil_theorem wikiPageWikiLink Armand_Borel.
- Borel–Weil_theorem wikiPageWikiLink Borel_subgroup.
- Borel–Weil_theorem wikiPageWikiLink Borel–Weil–Bott_theorem.
- Borel–Weil_theorem wikiPageWikiLink Cartan_subgroup.
- Borel–Weil_theorem wikiPageWikiLink Category:Representation_theory_of_Lie_groups.
- Borel–Weil_theorem wikiPageWikiLink Category:Theorems_in_representation_theory.
- Borel–Weil_theorem wikiPageWikiLink Compact_Lie_group.
- Borel–Weil_theorem wikiPageWikiLink Compact_group.
- Borel–Weil_theorem wikiPageWikiLink Complex_manifold.
- Borel–Weil_theorem wikiPageWikiLink Complex_number.
- Borel–Weil_theorem wikiPageWikiLink Complex_numbers.
- Borel–Weil_theorem wikiPageWikiLink Connected_space.
- Borel–Weil_theorem wikiPageWikiLink Flag_manifold.
- Borel–Weil_theorem wikiPageWikiLink Flag_variety.
- Borel–Weil_theorem wikiPageWikiLink Generalized_flag_variety.
- Borel–Weil_theorem wikiPageWikiLink Highest_weight_representation.
- Borel–Weil_theorem wikiPageWikiLink Holomorphic_function.
- Borel–Weil_theorem wikiPageWikiLink Holomorphic_line_bundle.
- Borel–Weil_theorem wikiPageWikiLink Holomorphic_map.
- Borel–Weil_theorem wikiPageWikiLink Holomorphic_vector_bundle.
- Borel–Weil_theorem wikiPageWikiLink Homogeneous_space.
- Borel–Weil_theorem wikiPageWikiLink Integer.
- Borel–Weil_theorem wikiPageWikiLink Irreducible_representation.
- Borel–Weil_theorem wikiPageWikiLink Irreducible_unitary_representation.
- Borel–Weil_theorem wikiPageWikiLink Mathematics.
- Borel–Weil_theorem wikiPageWikiLink Representation_theory.
- Borel–Weil_theorem wikiPageWikiLink Section_(fiber_bundle).
- Borel–Weil_theorem wikiPageWikiLink Semisimple_Lie_algebra.
- Borel–Weil_theorem wikiPageWikiLink Semisimple_Lie_group.
- Borel–Weil_theorem wikiPageWikiLink Special_linear_group.
- Borel–Weil_theorem wikiPageWikiLink Unitary_representation.
- Borel–Weil_theorem wikiPageWikiLink Weight_(representation_theory).
- Borel–Weil_theorem wikiPageWikiLinkText "Borel–Weil theorem".
- Borel–Weil_theorem hasPhotoCollection Borel–Weil_theorem.
- Borel–Weil_theorem wikiPageUsesTemplate Template:Citation.
- Borel–Weil_theorem wikiPageUsesTemplate Template:Harvtxt.
- Borel–Weil_theorem wikiPageUsesTemplate Template:Mergeto.
- Borel–Weil_theorem subject Category:Representation_theory_of_Lie_groups.
- Borel–Weil_theorem subject Category:Theorems_in_representation_theory.
- Borel–Weil_theorem comment "In mathematics, in the field of representation theory, the Borel–Weil theorem, named after Armand Borel and André Weil, provides a concrete model for irreducible representations of compact Lie groups and complex semisimple Lie groups. These representations are realized in the spaces of global sections of holomorphic line bundles on the flag manifold of the group. Its generalization to higher cohomology spaces is called the Borel–Weil–Bott theorem.".
- Borel–Weil_theorem label "Borel–Weil theorem".
- Borel–Weil_theorem sameAs m.0479vkc.
- Borel–Weil_theorem sameAs Q4944922.
- Borel–Weil_theorem sameAs Q4944922.
- Borel–Weil_theorem wasDerivedFrom Borel–Weil_theorem?oldid=682077883.
- Borel–Weil_theorem isPrimaryTopicOf Borel–Weil_theorem.