Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Banach–Tarski_paradox> ?p ?o }
- Banach–Tarski_paradox abstract "The Banach–Tarski paradox is a theorem in set-theoretic geometry, which states the following: Given a solid ball in 3‑dimensional space, there exists a decomposition of the ball into a finite number of disjoint subsets, which can then be put back together in a different way to yield two identical copies of the original ball. Indeed, the reassembly process involves only moving the pieces around and rotating them, without changing their shape. However, the pieces themselves are not "solids" in the usual sense, but infinite scatterings of points. The reconstruction can work with as few as five pieces.A stronger form of the theorem implies that given any two "reasonable" solid objects (such as a small ball and a huge ball), either one can be reassembled into the other. This is often stated informally as "a pea can be chopped up and reassembled into the Sun" and called the "pea and the Sun paradox".The reason the Banach–Tarski theorem is called a paradox is that it contradicts basic geometric intuition. "Doubling the ball" by dividing it into parts and moving them around by rotations and translations, without any stretching, bending, or adding new points, seems to be impossible, since all these operations ought, intuitively speaking, to preserve the volume. The intuition that such operations preserve volumes is not mathematically absurd and it is even included in the formal definition of volumes. However, this is not applicable here, because in this case it is impossible to define the volumes of the considered subsets, as they are chosen with such a large porosity. Reassembling them reproduces a volume, which happens to be different from the volume at the start.Unlike most theorems in geometry, the proof of this result depends in a critical way on the choice of axioms for set theory. It can be proven using the axiom of choice, which allows for the construction of nonmeasurable sets, i.e., collections of points that do not have a volume in the ordinary sense, and whose construction requires an uncountable number of choices.It was shown in 2005 that the pieces in the decomposition can be chosen in such a way that they can be moved continuously into place without running into one another.".
- Banach–Tarski_paradox thumbnail Banach-Tarski_Paradox.svg?width=300.
- Banach–Tarski_paradox wikiPageExternalLink fm1316.pdf.
- Banach–Tarski_paradox wikiPageExternalLink fm6127.pdf.
- Banach–Tarski_paradox wikiPageExternalLink 275.
- Banach–Tarski_paradox wikiPageExternalLink banachtarski.pdf.
- Banach–Tarski_paradox wikiPageExternalLink TheBanachTarskiParadox.
- Banach–Tarski_paradox wikiPageExternalLink JFM-item?50.0370.02.
- Banach–Tarski_paradox wikiPageExternalLink 2339.html.
- Banach–Tarski_paradox wikiPageExternalLink watch?v=s86-Z-CbaHA.
- Banach–Tarski_paradox wikiPageID "19759220".
- Banach–Tarski_paradox wikiPageLength "38415".
- Banach–Tarski_paradox wikiPageOutDegree "136".
- Banach–Tarski_paradox wikiPageRevisionID "681384468".
- Banach–Tarski_paradox wikiPageWikiLink Affine_transformation.
- Banach–Tarski_paradox wikiPageWikiLink Alfred_Tarski.
- Banach–Tarski_paradox wikiPageWikiLink Amenable_group.
- Banach–Tarski_paradox wikiPageWikiLink Axiom_of_choice.
- Banach–Tarski_paradox wikiPageWikiLink Axiom_of_dependent_choice.
- Banach–Tarski_paradox wikiPageWikiLink Ball_(mathematics).
- Banach–Tarski_paradox wikiPageWikiLink Banach_measure.
- Banach–Tarski_paradox wikiPageWikiLink Bernstein–Schroeder_theorem.
- Banach–Tarski_paradox wikiPageWikiLink Bijection.
- Banach–Tarski_paradox wikiPageWikiLink Bijective.
- Banach–Tarski_paradox wikiPageWikiLink Boolean_prime_ideal_theorem.
- Banach–Tarski_paradox wikiPageWikiLink Bounded_set.
- Banach–Tarski_paradox wikiPageWikiLink Cardinality.
- Banach–Tarski_paradox wikiPageWikiLink Category:Geometric_dissection.
- Banach–Tarski_paradox wikiPageWikiLink Category:Group_theory.
- Banach–Tarski_paradox wikiPageWikiLink Category:Mathematics_paradoxes.
- Banach–Tarski_paradox wikiPageWikiLink Category:Measure_theory.
- Banach–Tarski_paradox wikiPageWikiLink Category:Theorems_in_the_foundations_of_mathematics.
- Banach–Tarski_paradox wikiPageWikiLink Concatenate.
- Banach–Tarski_paradox wikiPageWikiLink Concatenation.
- Banach–Tarski_paradox wikiPageWikiLink Congruence_(geometry).
- Banach–Tarski_paradox wikiPageWikiLink Connected_space.
- Banach–Tarski_paradox wikiPageWikiLink Countable.
- Banach–Tarski_paradox wikiPageWikiLink Countable_set.
- Banach–Tarski_paradox wikiPageWikiLink Countably_infinite.
- Banach–Tarski_paradox wikiPageWikiLink Countably_many.
- Banach–Tarski_paradox wikiPageWikiLink Dense_set.
- Banach–Tarski_paradox wikiPageWikiLink Disjoint_sets.
- Banach–Tarski_paradox wikiPageWikiLink Disjoint_union.
- Banach–Tarski_paradox wikiPageWikiLink Empty_set.
- Banach–Tarski_paradox wikiPageWikiLink Equidecomposable.
- Banach–Tarski_paradox wikiPageWikiLink Equivalence_relation.
- Banach–Tarski_paradox wikiPageWikiLink Ernst_Zermelo.
- Banach–Tarski_paradox wikiPageWikiLink Euclidean_group.
- Banach–Tarski_paradox wikiPageWikiLink Euclidean_motion.
- Banach–Tarski_paradox wikiPageWikiLink Euclidean_plane.
- Banach–Tarski_paradox wikiPageWikiLink Euclidean_space.
- Banach–Tarski_paradox wikiPageWikiLink Existence_theorem.
- Banach–Tarski_paradox wikiPageWikiLink Felix_Hausdorff.
- Banach–Tarski_paradox wikiPageWikiLink File:Banach-Tarski_Paradox.svg.
- Banach–Tarski_paradox wikiPageWikiLink Fixed_point_(mathematics).
- Banach–Tarski_paradox wikiPageWikiLink Free_group.
- Banach–Tarski_paradox wikiPageWikiLink Fundamenta_Mathematicae.
- Banach–Tarski_paradox wikiPageWikiLink Generating_set_of_a_group.
- Banach–Tarski_paradox wikiPageWikiLink Geometry.
- Banach–Tarski_paradox wikiPageWikiLink Georg_Cantor.
- Banach–Tarski_paradox wikiPageWikiLink Giuseppe_Vitali.
- Banach–Tarski_paradox wikiPageWikiLink Group_(mathematics).
- Banach–Tarski_paradox wikiPageWikiLink Group_action.
- Banach–Tarski_paradox wikiPageWikiLink Group_isomorphism.
- Banach–Tarski_paradox wikiPageWikiLink Hahn–Banach_theorem.
- Banach–Tarski_paradox wikiPageWikiLink Hausdorff_paradox.
- Banach–Tarski_paradox wikiPageWikiLink Identity_element.
- Banach–Tarski_paradox wikiPageWikiLink If_and_only_if.
- Banach–Tarski_paradox wikiPageWikiLink Interior_(topology).
- Banach–Tarski_paradox wikiPageWikiLink Isometry.
- Banach–Tarski_paradox wikiPageWikiLink Isomorphism.
- Banach–Tarski_paradox wikiPageWikiLink John_von_Neumann.
- Banach–Tarski_paradox wikiPageWikiLink Kenzi_Satô.
- Banach–Tarski_paradox wikiPageWikiLink Lebesgue_measure.
- Banach–Tarski_paradox wikiPageWikiLink Lie_group.
- Banach–Tarski_paradox wikiPageWikiLink List_of_mathematical_jargon.
- Banach–Tarski_paradox wikiPageWikiLink Macalester_College.
- Banach–Tarski_paradox wikiPageWikiLink Mathematical_jargon.
- Banach–Tarski_paradox wikiPageWikiLink Mathematics_and_the_Imagination.
- Banach–Tarski_paradox wikiPageWikiLink Matthew_Foreman.
- Banach–Tarski_paradox wikiPageWikiLink Miklós_Laczkovich.
- Banach–Tarski_paradox wikiPageWikiLink Natural_number.
- Banach–Tarski_paradox wikiPageWikiLink Non-measurable_set.
- Banach–Tarski_paradox wikiPageWikiLink Nonmeasurable_set.
- Banach–Tarski_paradox wikiPageWikiLink Nota_Bene.
- Banach–Tarski_paradox wikiPageWikiLink Nota_bene.
- Banach–Tarski_paradox wikiPageWikiLink Orbit_(group_theory).
- Banach–Tarski_paradox wikiPageWikiLink Orthogonal_group.
- Banach–Tarski_paradox wikiPageWikiLink PDF.
- Banach–Tarski_paradox wikiPageWikiLink Paradox.
- Banach–Tarski_paradox wikiPageWikiLink Paradoxical_decomposition.
- Banach–Tarski_paradox wikiPageWikiLink Paradoxical_set.
- Banach–Tarski_paradox wikiPageWikiLink Paul_Cohen.
- Banach–Tarski_paradox wikiPageWikiLink Paul_Cohen_(mathematician).
- Banach–Tarski_paradox wikiPageWikiLink Polygon.
- Banach–Tarski_paradox wikiPageWikiLink Portable_Document_Format.
- Banach–Tarski_paradox wikiPageWikiLink R._M._Robinson.
- Banach–Tarski_paradox wikiPageWikiLink Raphael_M._Robinson.
- Banach–Tarski_paradox wikiPageWikiLink Rotation.
- Banach–Tarski_paradox wikiPageWikiLink Rotation_group_SO(3).