Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Universal_C*-algebra> ?p ?o }
Showing triples 1 to 31 of
31
with 100 triples per page.
- Universal_C*-algebra abstract "In mathematics, a universal C*-algebra is a C*-algebra described in terms of generators and relations. In contrast to rings or algebras, where one can consider quotients by free rings to construct universal objects, C*-algebras must be realizable as algebras of bounded operators on a Hilbert space by the Gelfand-Naimark-Segal construction and the relations must prescribe a uniform bound on the norm of each generator. This means that depending on the generators and relations, a universal C*-algebra may not exist. In particular, free C*-algebras do not exist.".
- Universal_C*-algebra wikiPageID "668934".
- Universal_C*-algebra wikiPageLength "2166".
- Universal_C*-algebra wikiPageOutDegree "12".
- Universal_C*-algebra wikiPageRevisionID "698939407".
- Universal_C*-algebra wikiPageWikiLink Algebra_over_a_field.
- Universal_C*-algebra wikiPageWikiLink American_Mathematical_Society.
- Universal_C*-algebra wikiPageWikiLink C*-algebra.
- Universal_C*-algebra wikiPageWikiLink Category:C*-algebras.
- Universal_C*-algebra wikiPageWikiLink Continuous_function.
- Universal_C*-algebra wikiPageWikiLink Continuous_functional_calculus.
- Universal_C*-algebra wikiPageWikiLink Fields_Institute_Monographs.
- Universal_C*-algebra wikiPageWikiLink Free_algebra.
- Universal_C*-algebra wikiPageWikiLink Gelfand–Naimark–Segal_construction.
- Universal_C*-algebra wikiPageWikiLink Mathematics.
- Universal_C*-algebra wikiPageWikiLink Quotient_ring.
- Universal_C*-algebra wikiPageWikiLink Ring_(mathematics).
- Universal_C*-algebra wikiPageWikiLinkText "Universal C*-algebra".
- Universal_C*-algebra wikiPageWikiLinkText "universal C*-algebra".
- Universal_C*-algebra wikiPageUsesTemplate Template:Citation.
- Universal_C*-algebra wikiPageUsesTemplate Template:No_footnotes.
- Universal_C*-algebra subject Category:C*-algebras.
- Universal_C*-algebra hypernym Algebra.
- Universal_C*-algebra type Algebra.
- Universal_C*-algebra comment "In mathematics, a universal C*-algebra is a C*-algebra described in terms of generators and relations. In contrast to rings or algebras, where one can consider quotients by free rings to construct universal objects, C*-algebras must be realizable as algebras of bounded operators on a Hilbert space by the Gelfand-Naimark-Segal construction and the relations must prescribe a uniform bound on the norm of each generator.".
- Universal_C*-algebra label "Universal C*-algebra".
- Universal_C*-algebra sameAs Q7893894.
- Universal_C*-algebra sameAs m.031ccb.
- Universal_C*-algebra sameAs Q7893894.
- Universal_C*-algebra wasDerivedFrom Universal_C*-algebra?oldid=698939407.
- Universal_C*-algebra isPrimaryTopicOf Universal_C*-algebra.