Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Noncommutative_residue> ?p ?o }
Showing triples 1 to 28 of
28
with 100 triples per page.
- Noncommutative_residue abstract "In mathematics, noncommutative residue, defined independently by M. Wodzicki (1984) and Guillemin (1985), is a certain trace on the algebra of pseudodifferential operators on a compact differentiable manifold that is expressed via a local density. In the case of the circle, the noncommutative residue had been studied earlier by M. Adler (1979) and Y. Manin (1978) in the context of one-dimensional integrable systems.".
- Noncommutative_residue wikiPageExternalLink item?id=SB_1988-1989__31__199_0.
- Noncommutative_residue wikiPageID "25708602".
- Noncommutative_residue wikiPageLength "2244".
- Noncommutative_residue wikiPageOutDegree "10".
- Noncommutative_residue wikiPageRevisionID "684035757".
- Noncommutative_residue wikiPageWikiLink Category:Noncommutative_geometry.
- Noncommutative_residue wikiPageWikiLink Circle.
- Noncommutative_residue wikiPageWikiLink Compact_space.
- Noncommutative_residue wikiPageWikiLink Differentiable_manifold.
- Noncommutative_residue wikiPageWikiLink Dixmier_trace.
- Noncommutative_residue wikiPageWikiLink Integrable_system.
- Noncommutative_residue wikiPageWikiLink Inventiones_Mathematicae.
- Noncommutative_residue wikiPageWikiLink Mathematics.
- Noncommutative_residue wikiPageWikiLink Pseudo-differential_operator.
- Noncommutative_residue wikiPageWikiLink Springer_Science+Business_Media.
- Noncommutative_residue wikiPageWikiLinkText "Noncommutative residue".
- Noncommutative_residue wikiPageWikiLinkText "noncommutative residue".
- Noncommutative_residue wikiPageUsesTemplate Template:Citation.
- Noncommutative_residue wikiPageUsesTemplate Template:Harvtxt.
- Noncommutative_residue subject Category:Noncommutative_geometry.
- Noncommutative_residue comment "In mathematics, noncommutative residue, defined independently by M. Wodzicki (1984) and Guillemin (1985), is a certain trace on the algebra of pseudodifferential operators on a compact differentiable manifold that is expressed via a local density. In the case of the circle, the noncommutative residue had been studied earlier by M. Adler (1979) and Y. Manin (1978) in the context of one-dimensional integrable systems.".
- Noncommutative_residue label "Noncommutative residue".
- Noncommutative_residue sameAs Q7049226.
- Noncommutative_residue sameAs m.076wwj3.
- Noncommutative_residue sameAs Q7049226.
- Noncommutative_residue wasDerivedFrom Noncommutative_residue?oldid=684035757.
- Noncommutative_residue isPrimaryTopicOf Noncommutative_residue.