Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Andrews–Curtis_conjecture> ?p ?o }
Showing triples 1 to 36 of
36
with 100 triples per page.
- Andrews–Curtis_conjecture abstract "In mathematics, the Andrews–Curtis conjecture states that every balanced presentation of the trivial group can be transformed into a trivial presentation by a sequence of Nielsen transformations on the relators together with conjugations of relators, named after James J. Andrews and Morton L. Curtis who proposed it in 1965. It is difficult to verify whether the conjecture holds for a given balanced presentation or not.It is widely believed that the Andrews–Curtis conjecture is false. While there are no counterexamples known, there are numerous potential counterexamples. It is known that the Zeeman conjecture on collapsibility implies the Andrews–Curtis conjecture.".
- Andrews–Curtis_conjecture wikiPageID "7754592".
- Andrews–Curtis_conjecture wikiPageLength "1484".
- Andrews–Curtis_conjecture wikiPageOutDegree "9".
- Andrews–Curtis_conjecture wikiPageRevisionID "637342779".
- Andrews–Curtis_conjecture wikiPageWikiLink Category:Combinatorial_group_theory.
- Andrews–Curtis_conjecture wikiPageWikiLink Category:Conjectures.
- Andrews–Curtis_conjecture wikiPageWikiLink Collapse_(topology).
- Andrews–Curtis_conjecture wikiPageWikiLink James_J._Andrews_(mathematician).
- Andrews–Curtis_conjecture wikiPageWikiLink Morton_L._Curtis.
- Andrews–Curtis_conjecture wikiPageWikiLink Nielsen_transformation.
- Andrews–Curtis_conjecture wikiPageWikiLink Presentation_of_a_group.
- Andrews–Curtis_conjecture wikiPageWikiLink Trivial_group.
- Andrews–Curtis_conjecture wikiPageWikiLink Zeeman_conjecture.
- Andrews–Curtis_conjecture wikiPageWikiLinkText "Andrews-Curtis Conjecture".
- Andrews–Curtis_conjecture wikiPageWikiLinkText "Andrews–Curtis conjecture".
- Andrews–Curtis_conjecture id "l/l120170".
- Andrews–Curtis_conjecture title "Low-dimensional topology, problems in".
- Andrews–Curtis_conjecture wikiPageUsesTemplate Template:Algebra-stub.
- Andrews–Curtis_conjecture wikiPageUsesTemplate Template:Citation.
- Andrews–Curtis_conjecture wikiPageUsesTemplate Template:Reflist.
- Andrews–Curtis_conjecture wikiPageUsesTemplate Template:Springer.
- Andrews–Curtis_conjecture subject Category:Combinatorial_group_theory.
- Andrews–Curtis_conjecture subject Category:Conjectures.
- Andrews–Curtis_conjecture type Conjecture.
- Andrews–Curtis_conjecture type Redirect.
- Andrews–Curtis_conjecture type Statement.
- Andrews–Curtis_conjecture type Statement.
- Andrews–Curtis_conjecture comment "In mathematics, the Andrews–Curtis conjecture states that every balanced presentation of the trivial group can be transformed into a trivial presentation by a sequence of Nielsen transformations on the relators together with conjugations of relators, named after James J. Andrews and Morton L. Curtis who proposed it in 1965. It is difficult to verify whether the conjecture holds for a given balanced presentation or not.It is widely believed that the Andrews–Curtis conjecture is false.".
- Andrews–Curtis_conjecture label "Andrews–Curtis conjecture".
- Andrews–Curtis_conjecture sameAs Q2409999.
- Andrews–Curtis_conjecture sameAs Conjecture_dAndrews-Curtis.
- Andrews–Curtis_conjecture sameAs m.026bxs9.
- Andrews–Curtis_conjecture sameAs Q2409999.
- Andrews–Curtis_conjecture wasDerivedFrom Andrews–Curtis_conjecture?oldid=637342779.
- Andrews–Curtis_conjecture isPrimaryTopicOf Andrews–Curtis_conjecture.