DBpedia – Linked Data Fragments

DBpedia 2016-04

Query DBpedia 2016-04 by triple pattern

Matches in DBpedia 2016-04 for { ?s ?p "In quantum mechanics, a boson (/ˈboʊsɒn/, /ˈboʊzɒn/) is a particle that follows Bose–Einstein statistics. Bosons make up one of the two classes of particles, the other being fermions. The name boson was coined by Paul Dirac to commemorate the contribution of the Indian physicist Satyendra Nath Bose in developing, with Einstein, Bose–Einstein statistics—which theorizes the characteristics of elementary particles. Examples of bosons include fundamental particles such as photons, gluons, and W and Z bosons (the four force-carrying gauge bosons of the Standard Model), the recently discovered Higgs boson, and the hypothetical graviton of quantum gravity; composite particles (e.g. mesons and stable nuclei of even mass number such as deuterium (with one proton and one neutron, mass number = 2), helium-4, or lead-208); and some quasiparticles (e.g. Cooper pairs, plasmons, and phonons).An important characteristic of bosons is that their statistics do not restrict the number of them that occupy the same quantum state. This property is exemplified by helium-4 when it is cooled to become a superfluid. Unlike bosons, two identical fermions cannot occupy the same quantum space. Whereas the elementary particles that make up matter (i.e. leptons and quarks) are fermions, the elementary bosons are force carriers that function as the 'glue' holding matter together. This property holds for all particles with integer spin (s = 0, 1, 2 etc.) as a consequence of the spin–statistics theorem.When a gas of Bose particles is cooled down to temperatures very close to absolute zero then the kinetic energy of the particles decreases to a negligible amount and they condense into a lowest energy level state. This state is called Bose-Einstein condensation. It is believed that this property is the explanation of superfluidity."@en }

Showing triples 1 to 2 of 2 with 100 triples per page.