Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q1566341> ?p ?o }
Showing triples 1 to 27 of
27
with 100 triples per page.
- Q1566341 subject Q7036101.
- Q1566341 subject Q7451612.
- Q1566341 subject Q7452174.
- Q1566341 abstract "In mathematics, an IP set is a set of natural numbers which contains all finite sums of some infinite set.The finite sums of a set D of natural numbers are all those numbers that can be obtained by adding up the elements of some finite nonempty subset of D.The set of all finite sums over D is often denoted as FS(D).A set A of natural numbers is an IP set if there exists an infinite set D such that FS(D) is a subset of A.Some authors give a slightly different definition of IP sets: They require that FS(D) equal A instead of just being a subset.Sources disagree on the origin of the name IP set. Some claim it was coined by Furstenberg and Weiss to abbreviate "infinite-dimensional parallelepiped", while others claim that it abbreviates "idempotent" (since a set is IP if and only if it is a member of an idempotent ultrafilter).".
- Q1566341 wikiPageExternalLink bhm2jun03.pdf.
- Q1566341 wikiPageExternalLink large.pdf.
- Q1566341 wikiPageExternalLink vbkatsiveli20march03.pdf.
- Q1566341 wikiPageExternalLink somenotionsofsize.pdf.
- Q1566341 wikiPageWikiLink Q1571831.
- Q1566341 wikiPageWikiLink Q15994928.
- Q1566341 wikiPageWikiLink Q181658.
- Q1566341 wikiPageWikiLink Q205140.
- Q1566341 wikiPageWikiLink Q207348.
- Q1566341 wikiPageWikiLink Q21199.
- Q1566341 wikiPageWikiLink Q226183.
- Q1566341 wikiPageWikiLink Q3054925.
- Q1566341 wikiPageWikiLink Q395.
- Q1566341 wikiPageWikiLink Q5385813.
- Q1566341 wikiPageWikiLink Q556862.
- Q1566341 wikiPageWikiLink Q7036101.
- Q1566341 wikiPageWikiLink Q7140652.
- Q1566341 wikiPageWikiLink Q7191426.
- Q1566341 wikiPageWikiLink Q7451612.
- Q1566341 wikiPageWikiLink Q7452174.
- Q1566341 wikiPageWikiLink Q7783932.
- Q1566341 comment "In mathematics, an IP set is a set of natural numbers which contains all finite sums of some infinite set.The finite sums of a set D of natural numbers are all those numbers that can be obtained by adding up the elements of some finite nonempty subset of D.The set of all finite sums over D is often denoted as FS(D).A set A of natural numbers is an IP set if there exists an infinite set D such that FS(D) is a subset of A.Some authors give a slightly different definition of IP sets: They require that FS(D) equal A instead of just being a subset.Sources disagree on the origin of the name IP set. ".
- Q1566341 label "IP set".