Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Numbering_(computability_theory)> ?p ?o }
Showing triples 1 to 48 of
48
with 100 triples per page.
- Numbering_(computability_theory) abstract "In computability theory a numbering is the assignment of natural numbers to a set of objects such as functions, rational numbers, graphs, or words in some language. A numbering can be used to transfer the idea of computability and related concepts, which are originally defined on the natural numbers using computable functions, to these different types of objects.Common examples of numberings include Gödel numberings in first-order logic and admissible numberings of the set of partial computable functions.".
- Numbering_(computability_theory) wikiPageID "2399097".
- Numbering_(computability_theory) wikiPageLength "4028".
- Numbering_(computability_theory) wikiPageOutDegree "23".
- Numbering_(computability_theory) wikiPageRevisionID "702639713".
- Numbering_(computability_theory) wikiPageWikiLink Admissible_numbering.
- Numbering_(computability_theory) wikiPageWikiLink Category:Computability_theory.
- Numbering_(computability_theory) wikiPageWikiLink Category:Theory_of_computation.
- Numbering_(computability_theory) wikiPageWikiLink Complete_numbering.
- Numbering_(computability_theory) wikiPageWikiLink Computability_theory.
- Numbering_(computability_theory) wikiPageWikiLink Computable_function.
- Numbering_(computability_theory) wikiPageWikiLink Cylindrification.
- Numbering_(computability_theory) wikiPageWikiLink Domain_of_a_function.
- Numbering_(computability_theory) wikiPageWikiLink First-order_logic.
- Numbering_(computability_theory) wikiPageWikiLink Friedberg_numbering.
- Numbering_(computability_theory) wikiPageWikiLink Graph_(discrete_mathematics).
- Numbering_(computability_theory) wikiPageWikiLink Gödel_numbering.
- Numbering_(computability_theory) wikiPageWikiLink Language.
- Numbering_(computability_theory) wikiPageWikiLink Natural_number.
- Numbering_(computability_theory) wikiPageWikiLink Partial_function.
- Numbering_(computability_theory) wikiPageWikiLink Partially_ordered_set.
- Numbering_(computability_theory) wikiPageWikiLink Rational_number.
- Numbering_(computability_theory) wikiPageWikiLink Recursively_enumerable_set.
- Numbering_(computability_theory) wikiPageWikiLink Set_(mathematics).
- Numbering_(computability_theory) wikiPageWikiLink Surjective_function.
- Numbering_(computability_theory) wikiPageWikiLinkText "Gödel numbering".
- Numbering_(computability_theory) wikiPageWikiLinkText "encoding".
- Numbering_(computability_theory) wikiPageWikiLinkText "numbering (computability theory)".
- Numbering_(computability_theory) wikiPageWikiLinkText "numbering".
- Numbering_(computability_theory) wikiPageWikiLinkText "numberings".
- Numbering_(computability_theory) wikiPageWikiLinkText "total numberings".
- Numbering_(computability_theory) subject Category:Computability_theory.
- Numbering_(computability_theory) subject Category:Theory_of_computation.
- Numbering_(computability_theory) hypernym Assignment.
- Numbering_(computability_theory) type Area.
- Numbering_(computability_theory) type Area.
- Numbering_(computability_theory) type Redirect.
- Numbering_(computability_theory) comment "In computability theory a numbering is the assignment of natural numbers to a set of objects such as functions, rational numbers, graphs, or words in some language.".
- Numbering_(computability_theory) label "Numbering (computability theory)".
- Numbering_(computability_theory) sameAs Q362019.
- Numbering_(computability_theory) sameAs Nummerierung_(Informatik).
- Numbering_(computability_theory) sameAs ナンバリング_(計算可能性理論).
- Numbering_(computability_theory) sameAs Numeração_(teoria_da_computação).
- Numbering_(computability_theory) sameAs m.079c2f.
- Numbering_(computability_theory) sameAs Нумерація_(математика).
- Numbering_(computability_theory) sameAs Q362019.
- Numbering_(computability_theory) wasDerivedFrom Numbering_(computability_theory)?oldid=702639713.
- Numbering_(computability_theory) isPrimaryTopicOf Numbering_(computability_theory).