Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Norm_(group)> ?p ?o }
Showing triples 1 to 37 of
37
with 100 triples per page.
- Norm_(group) abstract "In mathematics, in the field of group theory, the norm of a group is the intersection of the normalizers of all its subgroups. This is also termed the Baer norm, after Reinhold Baer.The following facts are true for the Baer norm: It is a characteristic subgroup. It contains the center of the group. It is contained inside the second term of the upper central series. It is a Dedekind group, so is either abelian or has a direct factor isomorphic to the quaternion group. If it contains an element of infinite order, then it is equal to the center of the group.".
- Norm_(group) wikiPageExternalLink ?q=an:0009.15504&format=complete.
- Norm_(group) wikiPageID "4967197".
- Norm_(group) wikiPageLength "1045".
- Norm_(group) wikiPageOutDegree "13".
- Norm_(group) wikiPageRevisionID "655154952".
- Norm_(group) wikiPageWikiLink Category:Functional_subgroups.
- Norm_(group) wikiPageWikiLink Category:Group_theory.
- Norm_(group) wikiPageWikiLink Center_(group_theory).
- Norm_(group) wikiPageWikiLink Central_series.
- Norm_(group) wikiPageWikiLink Centralizer_and_normalizer.
- Norm_(group) wikiPageWikiLink Characteristic_subgroup.
- Norm_(group) wikiPageWikiLink Dedekind_group.
- Norm_(group) wikiPageWikiLink Group_(mathematics).
- Norm_(group) wikiPageWikiLink Group_theory.
- Norm_(group) wikiPageWikiLink Mathematics.
- Norm_(group) wikiPageWikiLink Normalizer.
- Norm_(group) wikiPageWikiLink Quaternion_group.
- Norm_(group) wikiPageWikiLink Reinhold_Baer.
- Norm_(group) wikiPageWikiLink Subgroup.
- Norm_(group) wikiPageWikiLink Upper_central_series.
- Norm_(group) wikiPageWikiLinkText "Norm (group)".
- Norm_(group) wikiPageWikiLinkText "norm (group)".
- Norm_(group) hasPhotoCollection Norm_(group).
- Norm_(group) wikiPageUsesTemplate Template:Abstract-algebra-stub.
- Norm_(group) subject Category:Functional_subgroups.
- Norm_(group) subject Category:Group_theory.
- Norm_(group) hypernym Intersection.
- Norm_(group) type RoadJunction.
- Norm_(group) comment "In mathematics, in the field of group theory, the norm of a group is the intersection of the normalizers of all its subgroups. This is also termed the Baer norm, after Reinhold Baer.The following facts are true for the Baer norm: It is a characteristic subgroup. It contains the center of the group. It is contained inside the second term of the upper central series. It is a Dedekind group, so is either abelian or has a direct factor isomorphic to the quaternion group.".
- Norm_(group) label "Norm (group)".
- Norm_(group) sameAs Norma_(teoria_grup).
- Norm_(group) sameAs m.0cxldy.
- Norm_(group) sameAs Q7051416.
- Norm_(group) sameAs Q7051416.
- Norm_(group) wasDerivedFrom Norm_(group)?oldid=655154952.
- Norm_(group) isPrimaryTopicOf Norm_(group).