Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Conformally_flat_manifold> ?p ?o }
Showing triples 1 to 41 of
41
with 100 triples per page.
- Conformally_flat_manifold abstract "A (pseudo-)Riemannian manifold is conformally flat if each point has a neighborhood that can be mapped to flat space by a conformal transformation.More formally, let (M, g) be a pseudo-Riemannian manifold. Then (M, g) is conformally flat if for each point x in M, there exists a neighborhood U of x and a smooth function f defined on U such that (U, e2fg) is flat (i.e. the curvature of e2fg vanishes on U). The function f need not be defined on all of M.Some authors use locally conformally flat to describe the above notion and reserve conformally flat for the case in which the function f is defined on all of M.".
- Conformally_flat_manifold wikiPageID "3415428".
- Conformally_flat_manifold wikiPageLength "1597".
- Conformally_flat_manifold wikiPageOutDegree "18".
- Conformally_flat_manifold wikiPageRevisionID "607143064".
- Conformally_flat_manifold wikiPageWikiLink Category:Conformal_geometry.
- Conformally_flat_manifold wikiPageWikiLink Category:Manifolds.
- Conformally_flat_manifold wikiPageWikiLink Category:Riemannian_geometry.
- Conformally_flat_manifold wikiPageWikiLink Compact_space.
- Conformally_flat_manifold wikiPageWikiLink Conformal_geometry.
- Conformally_flat_manifold wikiPageWikiLink Conformal_map.
- Conformally_flat_manifold wikiPageWikiLink Conformal_transformation.
- Conformally_flat_manifold wikiPageWikiLink Constant_curvature.
- Conformally_flat_manifold wikiPageWikiLink Cotton_tensor.
- Conformally_flat_manifold wikiPageWikiLink Flat_manifold.
- Conformally_flat_manifold wikiPageWikiLink N-sphere.
- Conformally_flat_manifold wikiPageWikiLink Pseudo-Riemannian_manifold.
- Conformally_flat_manifold wikiPageWikiLink Riemann_curvature_tensor.
- Conformally_flat_manifold wikiPageWikiLink Riemannian_manifold.
- Conformally_flat_manifold wikiPageWikiLink Sectional_curvature.
- Conformally_flat_manifold wikiPageWikiLink Simply_connected.
- Conformally_flat_manifold wikiPageWikiLink Simply_connected_space.
- Conformally_flat_manifold wikiPageWikiLink Smooth_function.
- Conformally_flat_manifold wikiPageWikiLink Smoothness.
- Conformally_flat_manifold wikiPageWikiLink Weyl_tensor.
- Conformally_flat_manifold wikiPageWikiLink Weyl–Schouten_theorem.
- Conformally_flat_manifold wikiPageWikiLinkText "Conformally flat manifold".
- Conformally_flat_manifold wikiPageWikiLinkText "conformally flat manifold".
- Conformally_flat_manifold hasPhotoCollection Conformally_flat_manifold.
- Conformally_flat_manifold wikiPageUsesTemplate Template:Differential-geometry-stub.
- Conformally_flat_manifold subject Category:Conformal_geometry.
- Conformally_flat_manifold subject Category:Manifolds.
- Conformally_flat_manifold subject Category:Riemannian_geometry.
- Conformally_flat_manifold type Space.
- Conformally_flat_manifold comment "A (pseudo-)Riemannian manifold is conformally flat if each point has a neighborhood that can be mapped to flat space by a conformal transformation.More formally, let (M, g) be a pseudo-Riemannian manifold. Then (M, g) is conformally flat if for each point x in M, there exists a neighborhood U of x and a smooth function f defined on U such that (U, e2fg) is flat (i.e. the curvature of e2fg vanishes on U).".
- Conformally_flat_manifold label "Conformally flat manifold".
- Conformally_flat_manifold sameAs m.09b98t.
- Conformally_flat_manifold sameAs Q5160259.
- Conformally_flat_manifold sameAs Q5160259.
- Conformally_flat_manifold wasDerivedFrom Conformally_flat_manifold?oldid=607143064.
- Conformally_flat_manifold isPrimaryTopicOf Conformally_flat_manifold.